Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurments
Publication . Rodrigues, Raquel Oliveira; Lopes, Raquel; Pinho, Diana; Pereira, Ana I.; Garcia, Valdemar; Gassmann, Stefan; Sousa, Patrícia C.; Lima, Rui A.
Red blood cells (RBCs) in microchannels has tendency to undergo axial migration due to the parabolic velocity profile, which results in a high shear stress around wall that forces the RBC to move towards the centre induced by the tank treading motion of the RBC membrane. As a result there is a formation of a cell free layer (CFL) with extremely low concentration of cells. Based on this phenomenon, several works have proposed microfluidic designs to separate the suspending physiological fluid from whole in vitro blood. This study aims to characterize the CFL in hyperbolic-shaped microchannels to separate RBCs from plasma. For this purpose, we have investigated the effect of hyperbolic contractions on the CFL by using not only different Hencky strains but also varying the series of contractions. The results show that the hyperbolic contractions with a Hencky strain of 3 and higher, substantially increase the CFL downstream of the contraction region in contrast with the microchannels with a Hencky strain of 2, where the effect is insignificant. Although, the highest CFL thickness occur at microchannels with a Hencky strain of 3.6 and 4.2 the experiments have also shown that cells blockage are more likely to occur at this kind of microchannels. Hence, the most appropriate hyperbolic-shaped microchannels to separate RBCs from plasma is the one with a Hencky strain of 3.
Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications
Publication . Muñoz-Sánchez, Beatriz N.; Silva, Filipa Silva; Pinho, Diana; Vega, E.J.; Lima, Rui A.
Polydimethylsiloxane (PDMS), due to its remarkable properties, is one of the most widely used polymers in many industrial and medical applications. In this work, a technique based on a flow focusing technique is used to produce PDMS spherical particles with sizes of a few microns. PDMS precursor is injected through a hypodermic needle to form a film/reservoir over the needle's outer surface. This film flows towards the needle tip until a liquid ligament is steadily ejected thanks to the action of a coflowing viscous liquid stream. The outcome is a capillary jet which breaks up into PDMS precursor droplets due to the growth of capillary waves producing a micrometer emulsion. The PDMS liquid droplets in the solution are thermally cured into solid microparticles. The size distribution of the particles is analyzed before and after curing, showing an acceptable degree of monodispersity. The PDMS liquid droplets suffer shrinkage while curing. These microparticles can be used in very varied technological fields, such as biomedicine, biotechnology, pharmacy, and industrial engineering.
In vitro particulate analogue fluids for experimental studies of rheological and hemorheological behavior of glucose-rich RBC suspensions
Publication . Pinho, Diana; Campo-Deaño, Laura; Lima, Rui A.; Pinho, Fernando T.
Suspensions of healthy and pathological red blood cells (RBC) flowing in microfluidic devices are frequently used to perform in vitro blood experiments for a better understanding of human microcirculation hemodynamic phenomena. This work reports the development of particulate viscoelastic analogue fluids able to mimic the rheological and hemorheological behavior of pathological RBC suspensions flowing in microfluidic systems. The pathological RBCs were obtained by an incubation of healthy RBCs at a high concentration of glucose, representing the pathological stage of hyperglycaemia in diabetic complications, and analyses of their deformability and aggregation were carried out. Overall, the developed in vitro analogue fluids were composed of a suspension of semi-rigid microbeads in a carrier viscoelastic fluid made of dextran 40 and xanthan gum. All suspensions of healthy and pathological RBCs, as well as their particulate analogue fluids, were extensively characterized in steady shear flow, as well as in small and large amplitude oscillatory shear flow. In addition, the well-known cell-free layer (CFL) phenomenon occurring in microchannels was investigated in detail to provide comparisons between healthy and pathological in vitro RBC suspensions and their corresponding analogue fluids at different volume concentrations (5% and 20%). The experimental results have shown a similar rheological behavior between the samples containing a suspension of pathological RBCs and the proposed analogue fluids. Moreover, this work shows that the particulate in vitro analogue fluids used have the ability to mimic well the CFL phenomenon occurring downstream of a microchannel contraction for pathological RBC suspensions. The proposed particulate fluids provide a more realistic behavior of the flow properties of suspended RBCs when compared with existing non-particulate blood analogues, and consequently, they are advantageous for detailed investigations of microcirculation.
A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis
Publication . Pinto, Elmano; Faustino, Vera; Rodrigues, Raquel Oliveira; Pinho, Diana; Garcia, Valdemar; Miranda, João Mário; Lima, Rui A.
Microfluidic devices are electrical/mechanical systems that offer the ability to work with minimal sample volumes, short reactions times, and have the possibility to perform massive parallel operations. An important application of microfluidics is blood rheology in microdevices, which has played a key role in recent developments of lab-on-chip devices for blood sampling and analysis. The most popular and traditional method to fabricate these types of devices is the polydimethylsiloxane (PDMS) soft lithography technique, which requires molds, usually produced by photolithography. Although the research results are extremely encouraging, the high costs and time involved in the production of molds by photolithography is currently slowing down the development cycle of these types of devices. Here we present a simple, rapid, and low-cost nonlithographic technique to create microfluidic systems for biomedical applications. The results demonstrate the ability of the proposed method to perform cell free layer (CFL) measurements and the formation of microbubbles in continuous blood flow.
Simple methodology for the quantitative analysis of fatty acids in human red blood cells
Publication . Rodrigues, Raquel Oliveira; Costa, Helena da Conceição; Lima, Rui A.; Amaral, Joana S.
In the last years, there has been an increasing interest in evaluating possible relations between fatty acid (FA) patterns and the risk for chronic diseases. Due to the long life span (120 days) of red blood cells (RBCs), their FA profile reflects a longer term dietary intake and was recently suggested to be used as an appropriate biomarker to investigate correlations between FA metabolism and diseases. Therefore, the aim of this work was to develop and validate a simple and fast methodology for the quantification of a broad range of FAs in RBCs using gas chromatography with flame ionization detector, as a more common and affordable equipment suitable for biomedical and nutritional studies including a large number of samples. For this purpose, different sample preparation protocols were tested and compared, including a classic two-step method (Folch method) with modifications and different one-step methods, in which lipid extraction and derivatization were performed simultaneously. For the one-step methods, different methylation periods and the inclusion of a saponification reaction were evaluated. Differences in absolute FA concentrations were observed among the tested metho ds, in particular for some metabolically relevant FAs such as trans elaidic acid and eicosapentaenoic acid. The one-step method with saponification and 60 min of methylation time was selected since it allowed the identification of a higher number of FAs, and was further submitted to in-house validation. The proposed methodology provides a simple, fast and accurate tool to quantitatively analyse FAs in human RBCs, useful for clinical and nutritional studies.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

COMPETE

Funding Award Number

EXPL/EMS-SIS/2215/2013

ID