Loading...
Research Project
Untitled
Funder
Authors
Publications
Computational and experimental study of the behavior of cyano-based ionic liquids in aqueous solution
Publication . Batista, Marta; Kurnia, Kiki A.; Pinho, Simão; Gomes, J.R.B.; Coutinho, João A.P.
The solvation of cyano- (CN-) based ionic liquids (ILs) and their capacity to establish hydrogen bonds (H-bonds) with water was studied by means of experimental and computational approaches. Experimentally, water activity data were measured for aqueous solutions of ILs based on 1-butyl-3-methylimidazolium ([BMIM](+)) cation combined with one of the following anions: thiocyanate ([SCN](-)), dicyanamide ([DCA](-)), or tricyanomethanide ([TCM](-)), and of 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][TCB]). From the latter data, water activity coefficients were estimated showing that [BMIM][SCN] and [BMIM][DCA], unlike [BMIM][TCM] and [EMIM][TCB], are able to establish favorable interactions with water. Computationally, the conductor like screening model for real solvents (COSMO-RS) was used to estimate the water activity coefficients which compare well with the experimental ones. From the COSMO-RS results, it is suggested that the polarity of each ion composing the ILs has a strong effect on the solvation phenomena. Furthermore, classical molecular dynamics (MD) simulations were performed for obtaining an atomic level picture of the local molecular neighborhood of the different species. From the experimental and computational data it is showed that increasing the number of CN groups in the ILs' anions does not enhance their ability to establish H-bonds with water but decreases their polarities, being [BMIM][DCA] and [BMIM][SCN] the ones presenting higher propensity to interact.
Impact of the cation symmetry on the mutual solubilities between water and imidazolium-based ionic liquids
Publication . Martins, Mónia A.R.; Neves, Catarina M.S.S.; Kurnia, Kiki A.; Luís, Andreia; Santos, Luís M.N.B.F.; Freire, Mara G.; Pinho, Simão; Coutinho, João A.P.
Aiming at the evaluation of the impact of the ionic liquids (ILs) cation symmetry on their phase behaviour, in this work, novel mutual solubilities with water of the symmetric series of [C(n)C(n)im][NTf2] (with n=1-5) were determined and compared with their isomeric forms of the asymmetric [C(n)C(1)im][NTf2] group. While the solubility of isomeric ILs in water was found to be similar, the solubility of water in ILs follows the same trend up to a maximum cation alkyl side chain length. For n >= 4 in [C(n)C(n)im][NTf2] the solubility of water in the asymmetric ILs is slightly higher than that observed in the symmetric counterparts. The thermodynamic properties of solution and solvation derived from the experimental solubility data of ILs in water at infinite dilution, namely the Gibbs energy, enthalpy and entropy were used to evaluate the cation symmetry effect on the ILs solvation. It is shown that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Accordingly, it was found that the ILs solubility in water of both symmetric and asymmetric series depends on their molecular volume. Based on these findings, a linear correlation between the logarithm of the solubility of ILs in water and their molar volume is here proposed for the [NTf2]-based ILs at a fixed temperature.
Probing the interactions between ionic liquids and water: experimental and quantum chemical approach
Publication . Khan, Imran; Kurnia, Kiki A.; Mutelet, Fabrice; Pinho, Simão; Coutinho, João A.P.
For an adequate choice or design of ionic liquids, the knowledge of their interaction with other solutes and solvents is an essential feature for predicting the reactivity and selectivity of systems involving these compounds. In this work, the activity coefficient of water in several imidazolium-based ionic liquids with the common cation 1-butyl-3-methylimidazolium was measured at 298.2 K. To contribute to a deeper insight into the interaction between ionic liquids and water, COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies. The results showed good agreement between experimental and predicted activity coefficient of water in ionic liquids and that the interaction of water and ionic liquids was strongly influenced by the hydrogen bonding of the anion with water. Accordingly, the intensity of interaction of the anions with water can be ranked as the following: [CF3SO3](-) < [SCN](-) < [TFA](-) < Br(-) < [TOS](-) < Cl(-) < [CH3SO3](-) [DMP](-) < [Ac](-). In addition, fluorination and aromatization of anions are shown to reduce their interaction with water. The effect of temperature on the activity coefficient of water at infinite dilution was measured by inverse gas chromatography and predicted by COSMO-RS. Further analysis based on COSMO-RS provided information on the nature of hydrogen bonding between water and anion as well as the possibility of anion-water complex formation.
Designing ionic liquids for absorptive cooling
Publication . Kurnia, Kiki A.; Pinho, Simão; Coutinho, João A.P.
A computational methodology for designing ionic liquids (ILs) with an enhanced water absorption capacity to be used in absorption-refrigeration systems is presented here. It is based on increasing the hydrogen bond (HB)-acceptor ability of the anion and combining it with a cation that presents a weak cation-anion interaction. Employing this strategy, we identified and prepared three novel dianionic ILs with an enhanced water absorption capacity, larger than LiBr.
Analysis of the isomerism effect on the mutual solubilities of bis(trifluoromethylsulfonyl)imide-based ionic liquids with water
Publication . Martins, Mónia A.R.; Neves, Catarina M.S.S.; Kurnia, Kiki A.; Santos, Luís M.N.B.F.; Freire, Mara G.; Pinho, Simão; Coutinho, João A.P.
The knowledge of the liquid-liquid equilibria (LLE) between ionic liquids (ILs) and water is of utmost importance for environmental monitoring, process design and optimization. Therefore, in this work, the mutual solubilities with water, for the ILs combining the 1-methylimidazolium, [C(1)im](+); 1-ethylimidazolium, [C(2)im](+); 1-ethyl-3-propylimidazolium, [C(2)C(3)im](+); and 1-butyl-2,3-dimethylimidazolium, [C(4)C(1)C(1)im](+) cations with the bis(trifluoromethylsulfonyl)imide anion, were determined and compared with the isomers of the symmetric 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ([C(n)C(n)im][NTf2], with n=1-3) and of the asymmetric 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(n)C(1)im][NTf2], with n = 2-5) series of ILs. The results obtained provide a broad picture of the impact of the IL cation structural isomerism, including the number of alkyl side chains at the cation, on the water-IL mutual solubilities. Despite the hydrophobic behaviour associated to the [NTf2](-) anion, the results show a significant solubility of water in the IL-rich phase, while the solubility of ILs in the water-rich phase is much lower. The thermodynamic properties of solution indicate that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Using the results obtained here in addition to literature data, a correlation between the solubility of [NTf2]-based ILs in water and their molar volume, for a large range of cations, is proposed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was also used to estimate the LLE of the investigated systems and proved to be a useful predictive tool for the a priori screening of ILs aiming at finding suitable candidates before extensive experimental measurements.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
COMPETE
Funding Award Number
PEst-C/CTM/LA0011/2013