Loading...
Research Project
Untitled
Funder
Authors
Publications
Application of an electronic tongue to detect gliadins in gluten-free foods
Publication . Peres, António M.; Dias, L.G.; Veloso, Ana C.A.; Meirinho, Sofia G.; Morais, Jorge Sá; Machado, Adélio A.S.C.
Celiac disease is an autoimmune-mediated disorder triggered in genetically susceptible individuals by the ingestion of some gluten proteins, namely gliadins. To prevent inadvertent gluten consumption, the Commission Regulation (EC) N°41/2009 will implement labeling foods as ‘gluten-free” or “low-gluten content.
An electronic tongue for beer differentiation
Publication . Dias, L.G.; Peres, António M.; Barcelos, Tânia P.; Morais, Jorge Sá; Machado, Adélio A.S.C.
In this work an electronic tongue, based on a potentiometric solid-state mufti-sensor array, with 36 polymeric membranes, was built for developing an analytical tool to apply in process monitoring and quality control. As a first approach, this tool was applied together with a supervised pattern recognition tool to semi-quantitatively differentiate beers with different alcoholic levels.
An electronic tongue taste evaluation: identification of goat milk adulteration with bovine milk
Publication . Dias, L.G.; Peres, António M.; Veloso, Ana C.A.; Reis, Filipa S.; Vilas-Boas, Miguel; Machado, Adélio A.S.C.
An electronic tongue with 36 cross-sensibility sensors was built allowing a successful recognition of the
five basic taste standards, showing high sensibility to acid, salty and umami taste substances and lower
performance to bitter and sweet tastes. The taste recognition capability was afterwards tested in the
detection of goat milk adulteration with bovine milk, which is a problem for the dairy industry. This new
methodology is an alternative to the classical analyticalmethods used to detect caprine milk adulterations
with bovine milk, being a simpler, faster and economical procedure. The different signal profiles recorded
by the e-tongue device together with linear discriminant analysis allowed the implementation of a model
that could distinguish between rawskim milk groups (goat, cowand goat/cow) with an overall sensibility
and specificity of 97% and 93%, respectively. Furthermore, cross-validation showed that the modelwas able
to correct classify unknown milk samples with a sensibility and specificity of 87% and 70%, respectively.
Additionally, the model robustness was confirmed since it correctly or incorrectly classified milk samples
with, respectively, higher and lower probabilities than those that could be expected by chance.
Análise semi-quantitativa e quantitativa de bebidas não alcoólicas com uma língua electrónica
Publication . Barcelos, Tânia P.; Dias, L.G.; Peres, António M.
Neste trabalho usou-se uma língua electrónica constituída por dois
sistemas de multi-sensores, com 40 membranas poliméricas sensibilidade
cruzada, com composições diferentes, e um eléctrodo de referência Ag/AgCl. O
sistema foi aplicado na análise semi-quantitativa de bebidas não alcoólicas e
na quantificação das concentrações de compostos orgânicos e açúcares
existentes nessas bebidas. As concentrações de açúcares (frutose e glucose),
do antioxidante (ácido ascórbico) e dos acidificantes (ácido málico e ácido
cítrico) foram determinadas por HPLC.
Os sinais das membranas poliméricas registados durante a análise das
bebidas não alcoólicas com a língua electrónica foram tratados recorrendo a
métodos quimiométricos não supervisionados (análise dos componentes
principais) e métodos supervisionados (análise discriminante linear, regressão
linear múltipla e regressão pelos mínimos quadrados parciais).
Na análise semi-quantitativa, o objectivo foi diferenciar quatro grupos de
bebidas não alcoólicas com diferentes concentrações de sumo de fruta
adicionado: superiores a 30%, entre 14% e 30%, 5% e 10% e 0.1% e 2%.
Foram analisadas, com a língua electrónica, 16 bebidas portuguesas
adquiridas em supermercados. Os dados obtidos foram tratados com análise
discriminante linear com o procedimento “stepwise”, o que permitiu classificar
correctamente 100% dos dados originais e 93.8% no processo de validação
cruzada.
Para quantificar as concentrações dos acidificantes e açúcares foram
usados dois métodos lineares para a obtenção de modelos de
estimação/previsão: regressão linear múltipla e método dos mínimos
quadrados parciais. Os modelos lineares obtidos apresentaram bons
coeficientes de determinação (R2>0,84), tanto no grupo de calibração como no
grupo de validação cruzada, para a estimação e previsão das concentrações
dos açúcares. O modelo de previsão obtido para a quantificação do ácido
cítrico não apresentou resultados satisfatórios. Para o ácido málico verificou-se
não haver informação suficiente nos sinais obtidos da língua electrónica para
obter qualquer modelo de quantificação. O ácido ascórbico não foi considerado
no estudo quantitativo porque não foi encontrado em todas as amostras. In this work was used an electronic tongue built with two multi-sensors
system, with 40 different polymeric membranes with cross-sensibility, and an
Ag/AgCl reference electrode. These devices were applied in semi-quantitative
analysis of soft drinks and in the quantification of organic acids and sugars
present in these beverages. The beverage’s composition in sugars (fructose
and glucose) and organic acids (ascorbic acid, malic acid and citric acid) was
determined by HPLC.
The signals of the electronic tongue polymeric membranes obtained in
the analysis were treated with non-supervised multivariate methods such as,
principal components analysis, and supervised methods such as, linear
discriminant analysis, multiple linear regression and partial least square
regression.
In semi-quantitative analysis, the objective was to differentiate four nonalcoholic
beverages with different added fruit juice contents: higher than 30%,
between 14%-30%, 5%-10% and 0.1%-2%. A set of 16 portuguese beverages,
purchased in supermarkets, were analysed with the electronic tongue device.
The data obtained were treated by stepwise linear discriminant analysis,
allowing a 100% overall correct classification using the original data and 93.8%
for the cross-validation procedure.
For the quantification of the organic acids and sugars were used two
linear methods to obtain estimation/prediction models: multiple linear regression
and partial least squares regression. All linear models obtained for the
estimation and prediction of concentrations of sugars in the beverages, showed
a good coefficient of determination (R2>0,84) for the original data and for the
cross-validation procedure, respectively. The predictive model obtained for the
citric acid quantification did not produced satisfactory results. For malic acid
there was no sufficient information in the signals from the electronic tongue to
obtain a quantification linear model. Ascorbic acid was not considered in the
quantitative study because it was not found in all samples.
An electronic tongue for honey classification
Publication . Dias, L.G.; Peres, António M.; Vilas-Boas, Miguel; Rocha, Maria A.; Estevinho, Leticia M.; Machado, Adélio A.S.C.
An electronic tongue system was developed
based on 20 all-solid-state potentiometric sensors and
chemometric data processing, with polymeric membranes
applied on solid conducting silver-epoxy supports
and a Ag=AgCl reference electrode. The sensor
array was applied to 52 commercial honey samples
obtained randomly from different regions of Portugal.
These samples were analysed independently for their
pollen profiles by biological techniques and the data
collected with the tongue were evaluated for discrimination
of the samples with multivariate statistical
methods (principal component analysis and linear discriminant
analysis), to investigate whether the device
may provide an analytical alternative for classification
of honey samples with respect to pollen type, a task
which is time consuming and requires skilled labour
when performed by biological techniques. It was found
that the tongue has a reasonable efficiency for classification
of honey samples of the most common three
types (with Erica, Echium and Lavandula as predominant
pollens). With linear discriminant analysis, the
honey samples yielded about 84% classification accuracy
and 72% for crossed validation. In this study, the
honey samples correctly classified for the different
types of the dominant pollen were: 53% for Lavandula,
83% for Erica and 78% for Echium pollen.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PPCDT/QUI/58076/2004