Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- A narrative review of speech and EEG features for schizophrenia detection: progress and challengesPublication . Teixeira, Felipe; Costa, Miguel Rocha; Abreu, J.L. Pio; Cabral, Manuel; Soares, Salviano; Teixeira, João PauloSchizophrenia is a mental illness that affects an estimated 21 million people worldwide. The literature establishes that electroencephalography (EEG) is a well-implemented means of studying and diagnosing mental disorders. However, it is known that speech and language provide unique and essential information about human thought. Semantic and emotional content, semantic coherence, syntactic structure, and complexity can thus be combined in a machine learning process to detect schizophrenia. Several studies show that early identification is crucial to prevent the onset of illness or mitigate possible complications. Therefore, it is necessary to identify disease-specific biomarkers for an early diagnosis support system. This work contributes to improving our knowledge about schizophrenia and the features that can identify this mental illness via speech and EEG. The emotional state is a specific characteristic of schizophrenia that can be identified with speech emotion analysis. The most used features of speech found in the literature review are fundamental frequency (F0), intensity/loudness (I), frequency formants (F1, F2, and F3), Mel-frequency cepstral coefficients (MFCC's), the duration of pauses and sentences (SD), and the duration of silence between words. Combining at least two feature categories achieved high accuracy in the schizophrenia classification. Prosodic and spectral or temporal features achieved the highest accuracy. The work with higher accuracy used the prosodic and spectral features QEVA, SDVV, and SSDL, which were derived from the F0 and spectrogram. The emotional state can be identified with most of the features previously mentioned (F0, I, F1, F2, F3, MFCCs, and SD), linear prediction cepstral coefficients (LPCC), linear spectral features (LSF), and the pause rate. Using the event-related potentials (ERP), the most promissory features found in the literature are mismatch negativity (MMN), P2, P3, P50, N1, and N2. The EEG features with higher accuracy in schizophrenia classification subjects are the nonlinear features, such as Cx, HFD, and Lya.
- Analysis of the middle and long latency ERP components in SchizophreniaPublication . Costa, Miguel Rocha; Teixeira, Felipe; Teixeira, João PauloSchizophrenia is a complex and disabling mental disorder estimated to affect 21million people worldwide. Electroencephalography (EEG) has proven to be an excellent tool to improve and aid the current diagnosis of mental disorders such as schizophrenia. The illness is comprised of various disabilities associated with sensory processing and perception. In this work, the first 10−200 ms of brain activity after the self-generation via button presses (condition 1) and passive presentation (condition 2) of auditory stimuli was addressed. A time-domain analysis of the event-related potentials (ERPs), specifically the MLAEP, N1, and P2 components, was conducted on 49 schizophrenic patients (SZ) and 32 healthy controls (HC), provided by a public dataset. The amplitudes, latencies, and scalp distribution of the peaks were used to compare groups. Suppression, measured as the difference between both conditions’ neural activity, was also evaluated. With the exception of the N1 peak during condition (1), patients exhibited significantly reduced amplitudes in all waveforms analyzed in both conditions. The SZ group also demonstrated a peak delay in theMLAEP during condition (2) and amodestly earlier P2 peak during condition (1). Furthermore, patients exhibited less andmore N1 and P2 suppression, respectively. Finally, the spatial distribution of activity in the scalp during the MLAEP peak in both conditions, N1 peak in condition (1) and N1 suppression differed considerably between groups. These findings and measurements will be used with the finality of developing an intelligent system capable of accurately diagnosing schizophrenia.