Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Modelling academic dropout in computer engineering using arti cial neural networksPublication . Camelo, Diogo; Santos, João C.C.; Martins, Maria Prudência; Gouveia, Paulo D.F.School dropout in higher education is an academic, economic, political and social problem, which has a great impact and is difficult to resolve. In order to mitigate this problem, this paper proposes a predictive model of classification, based on artificial neural networks, which allows the prediction, at the end of the first school year, of the propensity that the computer engineering students of a polytechnic institute in the interior of the country have for dropout. A differentiating aspect of this study is that it considers the classifications obtained in the course units of the first academic year as potential predictors of dropout. A new approach in the process of selecting the factors that foreshadow the dropout allowed isolating 12 explanatory variables, which guaranteed a good predictive capacity of the model (AUC = 78.5%). These variables reveal fundamental aspects for the adoption of management strategies that may be more assertive in the combat to academic dropout.
- Previsão do abandono académico numa instituição de ensino superior com recurso a data miningPublication . Martins, Maria Prudência; Migueis, Vera L.; Fonseca, D.S.B.; Gouveia, Paulo D.F.Este estudo propõe dois modelos preditivos de classificação que permitem identificar, logo no final do 1º e do 2º semestres escolares, os estudantes de licenciatura de uma instituição de ensino superior mais propensos ao abandono académico. A metodologia proposta, que combina 3 algoritmos populares de data mining, como são as random forest, as máquinas de vetores de suporte e as redes neuronais artificiais, para além de contribuir para a assertividade da previsão, permite identificar por ordem de relevância os principais fatores que prenunciam o abandono académico. Os resultados empíricos demonstram ser possível reduzir para cerca de 1/4 as 4 dezenas de potenciais preditores do abandono, e mostram serem essencialmente dois, do contexto curricular do estudante, a explicarem essa propensão. Esse conhecimento revela-se de importância primordial para que os agentes de gestão possam adotar as medidas e decisões estratégicas mais propícias à diminuição dos índices de evasão discente.