Percorrer por autor "Zambom, Aline"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Solubility of olive oil phenolic compounds in green solventsPublication . Vale, Mariana Ribeiro de Paula; Zambom, Aline; Krüger, Felipe; Martins, Mónia A. R.; Coutinho, João A.P.; Pinho, Simão; Peres, António M.; Ferreira, OlgaOlive oil production yields by-products rich in bioactive phenolics with potential uses in several types of industries
- Solubility of olive oil phenolic compounds in green solventsPublication . Vale, Mariana Ribeiro de Paula; Zambom, Aline; Krüger, Felipe; Martins, Mónia A. R.; Coutinho, João A.P.; Pinho, Simão; Peres, António M.; Ferreira, OlgaThe production of olive oil generates various by-products that are rich in phenyl alcohols, secoiridoids, phenolic acids and aldehydes, flavonoids, and other bioactive compounds. Due to their diverse biological activities, these compounds have promising potential as functional additives in the food, pharmaceutical, and cosmetics industries.1 However, data on their solubility in water and common volatile organic solvents, as well as partitioning behavior—critical for optimizing extraction, purification, and formulation processes—remains very limited. In this study, the solubility of tyrosol (a phenyl alcohol) was experimentally determined in ten pure solvents and five aqueous binary solvent mixtures, using acetone, ethanol, 2-propanol, 1,3-butanediol, and 1,3-propanediol as co-solvents. Measurements were performed at 298 K using the analytical isothermal shake flask method. Additionally, the COnductor-like Screening MOdel for Real Solvents (COSMO-RS)3 using the default conformer distribution was employed to predict the solubility of tyrosol, hydroxytyrosol, and oleuropein in a wide range of pure organic solvents varying in polarity and functional groups, as well as in aqueous binary solvent mixtures. For tyrosol, the influence of solvent conformers and their apolar, hydrogen bond donor, and acceptor characteristics on COSMO-RS predictions was analyzed, as illustrated in Figure 1 for water–ethanol mixtures. Overall, the model effectively captures general solubility trends, though with reduced quantitative accuracy in polar aprotic solvents, indicating its utility for preliminary solvent selection.
- The role of the anion in imidazolium-based ionic liquids for fuel and terpenes processingPublication . Zambom, Aline; Vilas-Boas, Sérgio M.; Silva, Liliana P.; Martins, Mónia A. R.; Ferreira, Olga; Pinho, SimãoAbstract: The potentialities of methylimidazolium-based ionic liquids (ILs) as solvents were evaluated for some relevant separation problems—terpene fractionation and fuel processing—studying selectivities, capacities, and solvent performance indices. The activity coefficients at infinite dilution of the solute (1) in the IL (3), g¥ 13, of 52 organic solutes were measured by inverse gas chromatography over a temperature range of 333.2–453.2 K. The selected ILs are 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], and the equimolar mixture of [C4mim][PF6] and 1-butyl-3-methylimidazolium chloride, [C4mim]Cl. Generally, low polar solutes follow g¥ 1,[C4mim]Cl > g¥ 1,[C4mim][PF6]+[C4mim]Cl > g¥ 1,[C4mim][PF6] while the opposite behavior is observed for alcohols and water. For citrus essential oil deterpenation, the results suggest that cations with long alkyl chains, such as [C12mim]+, promote capacity, while selectivity depends on the solute polarity. Promising results were obtained for the separation of several model mixtures relevant to fuel industries using the equimolar mixture of [C4mim][PF6] and [C4mim]Cl. This work demonstrates the importance of tailoring the polarity of the solvents, suggesting the use of ILs with mixed anions as alternative solvents for the removal of aliphatic hydrocarbons and contaminants from fuels.
