Browsing by Author "Tuesta, Jose L. Diaz de"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Enhancing single and multi-component adsorption efficiency of pharmaceutical emerging contaminants using bio waste-derived carbon materials and geopolymersPublication . Silva, Ana P. F.; Baldo, Arthur P.; Silva, Adriano S.; Natal, Ana Paula S.; Bezerra, Ana J.B.; Tuesta, Jose L. Diaz de; Marin, Pricila; Peres, José A.; Gomes, HelderWater contamination with pharmaceuticals like acetaminophen (ACT), sulfamethoxazole (SMX), and phenolic compounds such as gallic acid (GA), have become a global concern. These contaminants are persistent environmental pollutants that threaten aquatic life and human health. Adsorption is recognized as an efficient and low-cost solution to tackle water pollution. In this study, the efficiency of three adsorbents—activated carbon (AC), geopolymer (GP), and carbon nanotubes (CNT) prepared from solid wastes for the removal of ACT, SMX, and GA by adsorption is assessed. AC, GP and CNT are synthesized from real wastes to address solid waste management needs. Physisorption confirmed AC superior BET surface area (527 m2 g 1), followed by CNTs (66 m2 g 1) and GPs (30 m2 g 1), allowing to achieve the highest adsorption capacity: 126.8 mg g 1 for ACT, 54.9 mg g 1 for SMX, and 151.5 mg g 1 for GA, with respective breakthrough times of 314, 66, and 68 min. Kinetic and isotherm adsorption models are fitted for all pair pollutant-adsorbent reaching 33 equations to accurately predict adsorption process, concluding that pseudo-second-order kinetic and Freundlich model best fit experimental data, demonstrating a strong adsorbent-adsorbate affinity. The findings suggest that these sustainable materials offer promising solutions for treating contaminated water.
- Plastic waste-derived carbon nanotubes: Influence of growth catalyst and catalytic activity in CWPOPublication . Roman, Fernanda; Silva, Adriano S.; Tuesta, Jose L. Diaz de; Baldo, Arthur P.; Lopes, Jessica P.M.; Gonçalves, Giane; Pereira, Ana I.; Praça, Paulo; Silva, Adrián; Faria, Joaquim L.; Bañobre-López, Manuel; Gomes, HelderLow-density polyethylene (LDPE) was used in this work to grow carbon nanotubes (CNTs) by chemical vapor deposition (CVD) over catalysts based on Ni, Fe and Al, synthesized either by co-precipitation (C) or wet impregnation (I) methods, with CNT yields in the range of 16–33 %. The morphology of the CNTs was directly influenced by the route used for the CVD catalyst synthesis, with co-precipitation-derived CVD catalysts resulting in CNT samples with curly walls. CNTs were purified with H2SO4 (10–50 wt.%) to remove attached metal particles. All synthesized materials (CVD-catalysts, as-synthesized CNTs, and purified CNTs) were tested as catalysts in the catalytic wet peroxide oxidation (CWPO) of paracetamol (PCM), chosen as a model pharmaceutical compound. Removals of 100 % of PCM in 8 h and 71 % of total organic carbon (TOC) in 24 h were achieved, with an H2O2 consumption efficiency of 76 % in 24 h for purified CNT (CNT@NiFeAl-C-P). The same CVD-catalyst (NiFeAl-C) was used to grow CNTs using real LDPE waste, and it was tested under the same reaction conditions, resulting in a PCM and TOC abatement of 90 % and 65 %, respectively. The synthesis of CNTs using LDP waste was a good alternative, given the environmental benefits associated with its reintroduction into the economic cycle as a material with higher value than initially (upcycling).
