Browsing by Author "Ribeiro, Gabriela Moreira"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Analysis and testing of the IPB pico-hydro emulation platform with grid connectionPublication . Ribeiro, Gabriela Moreira; Leite, Vicente; Manhães, Aline Gesualdi; Ferreira, Ângela P.The global context in which there is a need to reduce environmental impacts intensifies the search for new technologies for renewable sources. In addition to environmental issues, access to basic rights and social inclusion are also motivation for electricity generation, in a context including distributed generation (DG). Currently, the pico hydro power plant is an attractive application because of its resource availability; also, it is an interesting solution for a microgrid (on-grid or off-grid). On the other hand, usually, the conversion system is not "plug and play". This project presents the tests of convertion system for a "plug and play" solution, using different turbines and water wheel, permanent magnet synchronous generators (PMSG) and photovoltaic (PV) inverters. In this approach, generators can work at variable speed, having an overvoltage protection circuit. The prerequisites for device integration must be considered: power compatibility, minimum and maximum limit voltage, and the maximum current of PV inverter. The tests were done in the pico-hydro emulation platform, in the Superior School of Technology and Management (ESTiG). The low head propeller, Turgo, and Pelton turbines are tested in the emulation platform; as well as the vertical axis water wheel. The turbines were connected to the grid using SOLAX inverters (up to 1650 W) and OMNIK (up to 2300 W), presenting satisfactory results in both. The water wheel tests used five microinverters (up to 300 W), showing grid connection with three: BEON, GWL, and INVOLAR.
- Grid connection approach for very small-scale pico-hydro systems using PV microinvertersPublication . Ribeiro, Gabriela Moreira; Maidana, Wellington; Leite, V.; Ferreira, Ângela P.The use of renewable energy sources has grown significantly in recent decades, with emphasis on resources that have a low environmental impact in the energy production process. Small-scale pico-hydro systems have great potential and are also in line with increasing environmental requirements.
- Over-voltage protection for pico-hydro generation using PV microinvertersPublication . Scotta, Isabella Cristina; Ribeiro, Gabriela Moreira; Maidana, Wellington; Leite, V.Innovative, low-cost, environmentally friendly and renewable resource-based solutions are emerging to meet growing global energy demand. Hydroelectric technology is quite old and mature. Despite its importance, it is associated with large plants, with environmental impact. On contrary, small-scale systems, called pico-hydro systems (up to 5 kW) are not yet explored. Anyway, the exploration of pico-hydro systems has been increasing consistently, from the first off-grid applications in remote places to distributed generation, with the injection of the generated energy in the main grid or microgrids. Very recently, there have been advances in grid connection of these small-scale systems, using off-the-shelf components. Indeed, pico-hydro systems can be connected to the grid using off-the-shelf components, namely photovoltaic inverters. Thus, grid-connected pico-hydro systems have gained an enormous potential in distributed production. However, in situations of over-power, or whenever the generator is under no load, there is a need for effective over-voltage protection, unlike photovoltaic systems. The goal of this paper is to propose an over-voltage protection circuit, designed to ensure the integration of low-power pico-hydro systems connected to the grid using conventional photovoltaic microinverters. Extensive tests were performed on an experimental platform using three microinverters easily found on the market and a low power generator (300 W) developed for small wind turbines. The experimental results, demonstrated the performance of the proposed over-voltage protection circuit in four different situations, presented in this work, thus avoiding irreversible damages of generators and microinverters, in the context of the above described grid connection approach.
