Browsing by Author "Oliveira, Byanca Pereira Moreira de"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Evaluation of berberine nanoparticles as a strategy to modulate acetylcholinesterase activityPublication . Leimann, Fernanda Vitória; Souza, Luma Borges de; Oliveira, Byanca Pereira Moreira de; Rossi, Bruna Franzon; Silva, Patricia Sabino da; Shiraishi, Carlos Seiti Hurtado; Kaplum, Vanessa; Abreu, Rui M.V.; Pereira, Carla; Barros, Lillian; Peron, Ana Paula; Ineu, Rafael Porto; Oechsler, Bruno Francisco; Sayer, Claudia; Araujo, Pedro Henrique Hermes de; Gonçalves, Odinei Hess; Shiraishi, Carlos S.H.Researchers have concentrated efforts in the search for natural-based reversible inhibitors for cholinesterase enzymes as they may play a key role in the treatment of degenerative diseases. Diverse plant alkaloids can inhibit the action of acetylcholinesterase and, among them, berberine is a promising bioactive. However, berberine has poor water solubility and low bioavailability, which makes it difficult to use in treatment. The solid dispersion technique can improve the water affinity of hydrophobic substances, but berberine solid dispersions have not been extensively studied. Safety testing is also essential to ensure that the berberine-loaded solid dispersions are safe for use. This study investigated the effectiveness of berberine-loaded solid dispersions (SD) as inhibitors of acetylcholinesterase enzyme (AChE). Docking simulation was used to investigate the influence of berberine on AChE, and in vitro assays were conducted to confirm the enzymatic kinetics of AChE in the presence of berberine. Berberine SD also showed improved cytotoxic effects on tumoral cells when dispersed in aqueous media. In vivo assays using Allium cepa were implemented, and no cytotoxicity/genotoxicity was found for the berberine solid dispersion. These results suggest that berberine SD could be a significant step towards safe nanostructures for use in the treatment of neurodegenerative diseases.
- Lutein-loaded nanoparticles reverse oxidative stress, apoptosis, and autism spectrum disorder-like behaviors induced by prenatal valproic acid exposure in female ratsPublication . Viana, Cristini Escobar; Bortolotto, Vandreza Cardoso; Araujo, Stifani Machado; Dahleh, Mustafa Munir; Machado, Franciele Romero; Pereira, Adson de Souza; Oliveira, Byanca Pereira Moreira de; Leimann, Fernanda Vitória; Gonçalves, Odinei Hess; Prigol, Marina; Guerra, Gustavo PetriAutism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and repetitive behaviors. In this study, we assessed the effect of lutein-loaded nanoparticles on ASD-like be-haviors induced by prenatal valproic acid (VPA) exposure in female offspring rats and the possible involvement of oxidative stress and apoptosis. Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg), on the gestational day 12.5. The VPA-exposed female offspring rats were divided into two sub-groups and received either lutein-loaded nanoparticles (5 mg/kg) or saline by oral gavage, for 14 days. The animals were submitted to the three-chamber test and open field to evaluate ASD-like behaviors. The hippo -campus was removed for the determination of oxidative stress indicators (ROS; TBARS; SOD and Nrf2) and apoptosis biomarkers (Hsp-70; p38-MAPK; Bax and Bcl-2). The exposure to lutein-loaded nanoparticles reversed sociability deficit, social memory deficit, and anxiety-like and repetitive behaviors induced by VPA, and restored the oxidative stress indicators and apoptosis biomarkers in the hippocampus. This neurochemical effect must be associated with the reversal of ASD-like behaviors. These results provide evidence that lutein-loaded nano -particles are an alternative treatment for VPA-induced behavioral damage in female rats and suggest the involvement of oxidative stress.