Percorrer por autor "Kantayeva, Gauhar"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Application of machine learning in dementia diagnosis: a systematic literature reviewPublication . Kantayeva, Gauhar; Lima, José; Pereira, Ana I.According to the World Health Organization forecast, over 55 million people worldwide have dementia, and about 10 million new cases are detected yearly. Early diagnosis is essential for patients to plan for the future and deal with the disease. Machine Learning algorithms allow us to solve the problems associated with early disease detection. This work attempts to identify the current relevance of the application of machine learning in dementia prediction in the scientific world and suggests open fields for future research. The literature review was conducted by combining bibliometric and content analysis of articles originating in a period of 20 years in the Scopus database. Twenty-seven thousand five hundred twenty papers were identified firstly, of which a limited number focused on machine learning in dementia diagnosis. After the exclusion process, 202 were selected, and 25 were chosen for analysis. The recent increasing interest in the past five years in the theme of machine learning in dementia shows that it is a relevant field for research with still open questions. The methods used to identify dementia or what features are used to identify or predict this disease are explored in this study. The literature review revealed that most studies used magnetic resonance imaging (MRI) and its types as the main feature, accompanied by demographic data such as age, gender, and the mini-mental state examination score (MMSE). Data are usually acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Classification of Alzheimer’s disease is more prevalent than prediction of Mild Cognitive Impairment (MCI) or their combination. The authors preferred machine learning algorithms such as SVM, Ensemble methods, and CNN because of their excellent performance and results in previous studies. However, most use not one machine-learning technique but a combination of techniques. Despite achieving good results in the studies considered, there are new concepts for future investigation declared by the authors and suggestions for improvements by employing promising methods with potentially significant results.
- Collaborative learning platform using learning optimized algorithmsPublication . Azevedo, Beatriz Flamia; Amoura, Yahia; Kantayeva, Gauhar; Pacheco, Maria F.; Pereira, Ana I.; Fernandes, Florbela P.Aware that the lack of mathematical knowledge and skills is a major problem for the development of a modern, inclusive and informed society, the MathE partnership has developed a tool that is aimed at bridging the gap that moves students away from courses that rely on a mathematical core. The MathE collaborative learning platform offers higher education students a package of scientific and pedagogical resources that allow them to be active agents in their learning pathway, by self-managing their study. The MathE platform is currently being used by a significant number of users, from all over the world, as a tool to support and engage students, ensuring new and creative ways to encourage them to improve their mathematical skills and therefore increasing their confidence and capacities. In order to enhance this platform, a visual representation of the performance of the students is already implemented, based on the recorded performance historic data for each student. This paper contains a literature review about the implementation of data mining techniques in education, followed by a description of the features of the MathE learning system and suggestions of data parameters to support the improvement of the students’ performance. Future work includes the application of optimization and learning algorithms so that the MathE platform will have a dynamical structure and act as a virtual tutor for the users.
- Collaborative learning platform using learning optimized algorithmsPublication . Azevedo, Beatriz Flamia; Amoura, Yahia; Kantayeva, Gauhar; Pacheco, Maria F.; Pereira, Ana I.; Fernandes, Florbela P.Aware that the lack of mathematical knowledge and skills is a major problem for the development of a modern, inclusive and informed society, the MathE partnership has developed a tool that is aimed at bridging the gap that moves students away from courses that rely on a mathematical core. The MathE collaborative learning platform offers higher education students a package of scientific and pedagogical resources that allow them to be active agents in their learning pathway, by self-managing their study. The MathE platform is currently being used by a significant number of users, from all over the world, as a tool to support and engage students, ensuring new and creative ways to encourage them to improve their mathematical skills and therefore increasing their confidence and capacities. In order to enhance this platform, a visual representation of the performance of the students is already implemented, based on the recorded performance historic data for each student. This paper contains a literature review about the implementation of data mining techniques in education, followed by a description of the features of the MathE learning system and suggestions of data parameters to support the improvement of the students’ performance. Future work includes the application of optimization and learning algorithms so that the MathE platform will have a dynamical structure and act as a virtual tutor for the users. © 2021, Springer Nature Switzerland AG.
