Percorrer por autor "Guerreiro, Nathan Antonio"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Aplicação de identificação de episódios de fibrilação atrialPublication . Guerreiro, Nathan Antonio; Teixeira, João Paulo; Dajer, Maria EugeniaAs Doenças Cardiovasculares (DCVs) causam cerca de 18 milhões de mortes por ano, segundo a Organização Mundial da Saúde (OMS). Na Europa, mais de 10 milhões de pessoas são afetadas anualmente, com 3 milhões de óbitos registrados em 2021. No Brasil, são aproximadamente 400 mil mortes por ano, resaltando arritmias cardíacas. A fibrilação atrial (FA), arritmia mais comum, é caracterizada por ritmo cardíaco irregular. Diante desse cenário e alinhado ao papel social do engenheiro e ao Objetivo de Desenvolvimento Sustentável (ODS) “Garantir saúde e bem-estar para todos” da Organização das Nações Unidas (ONU), este trabalho apresenta o desenvolvimento de uma interface gráfica do usuário (GUI) para aquisição e classificação de eletrocardiogramas (ECG). O sistema foi implementado em MATLAB, integrando aquisição em tempo real com a plataforma BITalino c (derivação I, via Bluetooth), detecção dos picos R e classificação automática de episódios de FA com redes neurais LSTM. São extraídas quatro características principais a cada 60 ciclos cardíacos: intervalos RR e entropias de Shannon das ondas T, U e P. Após normalização, essas variáveis compõem os vetores de entrada da rede, que classifica como Outro Ritmo, Ritmo Normal e Ritmo FA. A aplicação permite ainda a visualização dos sinais em tempo real e a geração automática de relatórios em PDF. A validação com sinais da base de dados MIT-BIH Atrial Fibrillation demonstrou que a interface é funcional, e a acurácia de 98,17%, obtida em estudo anterior, evidencia seu potencial como ferramenta auxiliar na análise de ECGs em ambientes clínicos e domiciliares.
- Comparison of neural network architectures for diabetes predictionPublication . Guerreiro, Nathan Antonio; Nijo, Rui; Teixeira, João PauloDiabetes represents a significant global health challenge, with millions of individuals affected and substantial impacts on healthcare systems. In this study, we compare two neural network architectures for diabetes prediction: the Feedforward Neural Network (FFNN) and the Cascade-Forward Backpropagation Neural Network (CFBPNN). Utilizing the Diabetes Prediction Dataset, comprising 100,000 samples, and after a balanced result, 17,000 samples were obtained. The networks are trained using the Levenberg-Marquardt and Resilient Backpropagation algorithms, and performance metrics, including precision, sensitivity, specificity, accuracy, F1-score, and computational time, are evaluated. Results indicate that the FFNN architecture paired with the Levenberg-Marquardt algorithm demonstrates superior diagnostic prediction accuracy with 91,10%. However, this comes at the cost of longer computational time compared to the CFBPNN.
