Browsing by Author "Bastin, Laurent"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A microporous metal-organic framework for separation of CO2/N-2 and CO2/CH4 by fixed-bed adsorptionPublication . Bastin, Laurent; Bárcia, Patrick da Silva; Hurtado, Eric; Silva, José A.C.; Rodrigues, Alírio; Chen, BanglinA microporous MOF Zn(BDC)(4,4'-Bipy)0.5 (MOF-508b, BDC = 1,4-benzenedicarboxylate, 4,4'-Bipy = 4,4'-bipyridine) was examined for the separation and removal of CO2 from its binary CO2/N-2 and CO2/CH4 and ternary CO2/CH4/N-2 mixtures by fixed-bed adsorption. With one-dimensional pores of about 4.0 x 4.0 angstrom to induce their differential interactions with the three components, MOF-508b exhibits highly selective adsorption to CO2 with the,adsorption capacity of 26.0 wt % at 303 K and 4.5 bar. This is the first example of microporous MOFs for the separation and removal of CO2 from its binary and ternary mixtures by fixed-bed adsorption, establishing the feasibility of the emerging microporous MOFs for their potential. applications in this very important industrial and environmental process.
- Single and multicomponent sorption of CO2, CH4 and N-2 in a microporous metal-organic frameworkPublication . Bárcia, Patrick da Silva; Bastin, Laurent; Hurtado, Eric; Silva, José A.C.; Rodrigues, Alírio; Chen, BanglinSingle and multicomponent fixed-bed adsorption of CO2, N-2, and CH4 on crystals of MOF-508b has been studied in this work. Adsorption equilibrium was measured at temperatures ranging from 303 to 343 K and partial pressures up to 4.5 bar. MOF-508b is very selective for CO2 and the loadings of CH4 and N-2 are practically temperature independent. The Langmuir isotherm model provides a good representation of the equilibrium data. A dynamic model based on the LDF approximation for the mass transfer has been used to describe with good accuracy the adsorption kinetics of single, binary and ternary breakthrough curves. It was found that the intra-crystalline diffusivity for CO2 is one order of magnitude faster than for CH4 and N-2.