proceedings of the international workshop

fire design of concrete structures
from materials modelling to structural performance

edited by
João Paulo Correia Rodrigues
Gabriel Alexander Khoury
Niels Peter Høj

organization

University of Coimbra, Portugal | 8th and 9th November
International Workshop

“Fire Design of Concrete Structures – From Materials Modelling to Structural Performance”

Coimbra - Portugal 2007
fib Workshop

Proceedings of the International workshop

“Fire Design of Concrete Structures – From Materials Modelling to Structural Performance”

University of Coimbra
Coimbra – Portugal
8th-9th November 2007

João Paulo Correia Rodrigues
Department of Civil Engineering
Faculty of Sciences and Technology
University of Coimbra
Coimbra, Portugal

Gabriel Alexander Khoury
Department of Civil Engineering
Imperial College London, UK
Padua University, Italy

Niels Peter Høj
HOJ Consulting GmbH
Brunnen, Switzerland
FORWARD

Improvements in structural fire safety have significant positive implications to life-time costs and human safety records of concrete structures. For this reason the subject has been, for a long time, of high interest amongst researchers, academics and practicing engineers as well as users, owners and the authorities. The subject is challenging especially because of the complex nature, and behaviour, of concrete as a material during fire and because of the nature of fire itself which could involve rapid heating to 800-1000°C or more. This subject is by no means fully investigated and there is a need for a better understanding of the response of concrete materials and structures to the thermal shock that fire presents - leading to improved designs intended to combat this ever-present potential problem.

The authors contributing to this workshop came from various parts of the world. Some individuals and organisations are leading experts in the field for many years if not decades. The synergy between the different complimentary subjects and different experts provides a valuable up-to-date compilation, and insight, encompassed within these proceedings. There were 54 papers presented at the workshop falling under a comprehensive array of complimentary topics such as: (1) Physical and mechanical properties for fire design; (2) Micro-structural modelling; (3) Spalling; (4) Sectional analysis and structural behaviour; (5) Influence of materials behaviour on structural performance; (6) Detailing and connections; (7) Assessment and repair after fire; (9) Real fires, large-scale tests and model validation.

The purpose of such a workshop is not only to bring people together with a common purpose but also to inspire the workshop participants and readers of these proceedings with new ideas, methodologies and discoveries critical to the promotion of improved structural fire safety design. This workshop indeed presents new insights and developments which are too many to list in this forward. They include the development of a new NMR technique that measures non-intrusively the moisture content of cement pastes down to below the levels measured intrusively by mercury porosimetry and Nitrogen intrusion. The development of new optical equipment for the assessment of fire damaged concrete structures. A new understanding of how polypropylene fibres contribute to pore pressure reduction in fire and hence the reduction in the risk of explosive spalling. Impressive developments in numerical structural fire modelling which are integrated with advances in materials testing and knowledge. A note of caution for incoming researchers is to be critical when reading the literature, to conserve energies and resources in future research by investigating some of the many areas that still require development, and by clearing out confusions in terminology.

The 2-day Coimbra fib Workshop on “Fire Design of Concrete Structures – From Materials Modelling to Structural Performance” was held at Coimbra University (Portugal) on the 8th and 9th of November 2007 and follows close on the heel of the completion of the fib State-of-the-art report bulletin 38 on “Fire Design of concrete structures – materials, structures and modelling” published in April 2007. The conference was attended by 93 participants from 21 different countries among which many young researchers.

Gabriel Alexander Khoury (Convener fib WP 4.3.1)  
Niels Peter Hoj (Convener fib TG 4.3)  
João Paulo C. Rodrigues
COMMITTEES

Organizing Committee

- João Paulo C. Rodrigues (Chairman)
  Univ. Coimbra - Portugal

- Luc Taerwe (Co - Chairman) - (Convener fib WP 4.3.2)
  Ghent University - Belgium

- Niels Peter Hoj (Convener fib TG 4.3)
  HOJ Consulting GmbH - Switzerland

- Gabriel Alexander Khoury (Convener fib WP 4.3.1)
  Imperial College London - UK

  - Pietro G. Gambarova
    Politecnico di Milano - Italy

  - Alberto Meda
    University of Bergamo - Italy

- Fernando José F. Branco
  University of Coimbra - Portugal

- Aldina Maria C. Santiago
  University of Coimbra - Portugal
Scientific Committee

• Alberto Meda - University of Bergamo - Italy
• Angel Arteaga - Instituto Eduardo Torroja - Spain
  • António Leça Coelho - LNEC - Portugal
    • Arnold Van Acker - Belgium
• Arnoud Breunese - TNO - The Netherlands
• Carmello Majorana - University of Padua - Italy
• Ekkehard Richter - Tech. Univ. of Braunschweig - Germany
  • Fabienne Robert - CERIB - France
• Gabriel Alexander Khoury - Imperial College London - UK
• Jean-Claude Dotreppe - University of Liège - Belgium
  • Jean-François Denoël - FEBELCEM - Belgium
• Jean-Marc Franssen - University of Liège - Belgium
  • Jesus Rohena - FHWA - USA
• João Paulo C. Rodrigues - University of Coimbra - Portugal
  • Joaquim Barros - University of Minho - Portugal
    • José Maria Izquierdo - Intemac - Spain
• Josko Ožbolt- University of Stuttgart - Germany
  • Kese Both - TNO - The Netherlands
    • Long Phan - NIST - USA
• Luc Taerwe - Ghent University - Belgium
  • Mamoud Behloul - Lafarge - France
• Paolo Riva - University of Brescia - Italy
• Patrick Bamonte - Politecnico di Milano - Italy
• Pietro Gambarova- Politecnico di Milano - Italy
• Roberto Felicetti - Politecnico di Milano - Italy
• Sérgio Lopes - University of Coimbra - Portugal
  • Steward Matthews - BRE - UK
    • Tom Lennon - BRE- UK
  • Ulla-Maija Jumppanen - Finland
• Ulrich Diederichs - University of Rostock - Germany
  • Xianyu Jin - Zhejiang University- China
• Yngve Anderberg - Fire Safety Design AB - Sweden
• Yoshikazu Ota - Ota Engineering - Japan
• Zongjin Li - Hong Kong Univ. of Science and Tech. - China
TABLE OF CONTENTS

FOREWORD.............................................................................................................V
COMMITTEES..........................................................................................................VII
SPONSORS.............................................................................................................IX
TABLE OF CONTENTS..........................................................................................XI
AUTHOR INDEX.....................................................................................................595

SESSION 1 - PHYSICAL AND MECHANICAL PROPERTIES FOR FIRE DESIGN
.......................................................................................................................................1

- Fire and concrete: from materials behaviour to application
  Gabriel Alexander KHOURY....................................................................................3

- Experimental study of mechanical behaviour of high performance concrete at high temperature
  Jean-Christophe MINDEGUIA, Pierre PIMIENTA, Arnaud BEUROTTE,
  Christian BORDERIE and Hélène CARRE..........................................................25

- Experimental investigations concerning high temperature behaviour of ultra high strength concrete
  Ulrich DIEDERICHs and Vesa PENTTALA................................................................39

- Compression tests of high-strength concrete cylinders at elevated temperature
  Takao HIRASHIMA, Koji TOYODA, Heisuke YAMASHITA, Masatoshi TOKYOYODA and
  Hideki UESUGI....................................................................................................47

- High-temperature resistance and thermal properties of self-compacting concrete: preliminary results
  Patrick BAMONTE and Pietro G. GAMBAROVA....................................................59

- Dehydration and rehydration processes in cementitious materials after fire.
  Correlation between micro and macrostructural transformations
  Cruz ALONSO and Lorenzo F. MUNICIO..............................................................69

XI
SESSION 2 - MICRO-STRUCTURAL MODELLING

- Micro-structural modelling of concrete under fire conditions
  Carmelo E. MAJORANA, Valentina A. SALOMONI and Gabriel Alexander KHOURY
  ................................................................. 79

- Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete
  Francesco PESAVENTO, Bernhard SCHREFLER, Carmelo MAIORANA and Dariusz GAWIN
  ................................................................. 81

- An experimental study of transient strain for a concrete with limestone aggregate
  Masatoshi TOKYOYA, Heisuke YAMASHITA, Koji TOYODA, Takeo HIRASHIMA, and Hideki UESUGI
  ................................................................. 95

- A model for the structural behaviour of bored tunnels during fire
  B.B.G. LOTTMAN, E.A.B. KOENDERS, C.B.M. BLOM and V. BOUWMAN
  ................................................................. 105

- Modelling localised failure of reinforced concrete slabs in fire
  Xinmeng YU, Zhaohui HUANG, Ian BURGESS and Roger PLANK
  ................................................................. 115

- Damage and strength reduction of a high performance concrete due to thermomechanical stresses
  Sven HUISMANN, Joao Paulo C. RODRIGUES and Manfred KORZEN
  ................................................................. 127

- Assessment of the equivalent thermal diffusivity for fire analysis of concrete structures
  Roberto FELICETTI
  ................................................................. 141

SESSION 3 - SPALLING

- Explosive spalling of concrete under fire conditions
  Ulrich SCHNEIDER and Johannes HORVATH
  ................................................................. 159

- Experimental study of the influence of polypropylene fibres on material properties and fire spalling of concrete
  Robert JANSSON and Lars BOSTRÖM
  ................................................................. 177
• Explosive spalling mitigation mechanism of fiber reinforced high strength concrete under high temperature condition
  Sofren SUHAENDI and Takashi HORIGUCHI ................................................................. 189

• Effects of spalling on the behaviour of reinforced concrete structures in fire
  Zhaohui HUANG, Ian W. BURGESS and Roger J. PLANK ........................................... 199

• Polypropylene fibres and explosive spalling
  Gabriel Alexander, KHOURY and Carmelo E. MAJORANA ........................................ 211

• Experimental study of fire behaviour of different concretes – thermo-hydral and spalling analysis
  Jean-Christophe MINDEGUA, Pierre PIMIENTA, Christian La BORDERIE and Hélène CARRE ................................................................. 225

• Numerical analysis of spalling of concrete cover at high temperature
  Joško OŽBOLT, Goran PERIŠKIĆ and Hans-Wolf REINHARDT ........................................ 237

SESSION 4 - SECTIONAL ANALYSIS AND STRUCTURAL BEHAVIOUR ............................................. 251

• From member design to global structural behaviour
  Luc TAERWE ............................................................................................................... 253

• Nonlinear analysis of shallow parabolic concrete arches under thermal loading
  Mark A. BRADFORD and R. Ian GILBERT ........................................................................ 271

• Ultimate bending moment capacity of reinforced concrete beam sections at high temperatures
  Miguel GONÇALVES and João Paulo C. RODRIGUES .................................................. 281

• Analytical safety assessment of RC frames exposed to fire
  Ilaria VENANZI and Marco BRECCOLOTTI ................................................................. 289

• The buckling of slender concrete and concrete filled columns in fire
  Shan-Shan HUANG, Ian BURGESS, Zhao-Hui HUANG and Roger PLANK ...................... 299

• Layered section analysis of RC slabs subjected to fire
  Darius BACINSKAS, Gintaris KAKLAUSKAS and Viktor GRIBNIAK ................................ 311

XIII
- Plastic-hinge approach for performance-based assessment of RC columns under fire
  Alexandre LANDESMANN, Daniel MOUCO and João Paulo C. RODRIGUES
  ................................................................. 319

SESSION 5 - INFLUENCE OF MATERIAL BEHAVIOUR ON STRUCTURAL PERFORMANCE

- Macroscopic finite element model for tracing the response of concrete structures under fire conditions
  Venkatesh KODUR, Monther DWAIKAT and Nikhil RAUT
  ................................................................. 327

- Study on fracture toughness of hybrid fiber reinforced high-strength concrete at high temperature environment
  Takashi HORIGUCHI, Kazuo WATANABE and Sofren Leo SUHAENDI
  ................................................................. 343

- Temperature and shear capacity calculation for prestressed hollow core slabs under fire conditions
  Yahia MSAAD and André CHEFDEBIEN
  ................................................................. 351

- Numerical evaluation of the fire behaviour of a concrete tunnel integrating the effects of spalling
  Jean-Mark. FRANSSEN, F. HANUS and J.-C. DOTREPPE
  ................................................................. 359

- On the effects of structural stability on the M-N envelopes of thermally-damaged RC sections
  Patrick BAMONTE
  ................................................................. 369

- A new risk-based approach to predict spalling of ordinary strength concrete walls subjected to fire
  Susan LAMONT, Barbara LANE, Rachel YIN, Alexander HEISE and Linus LIM
  ................................................................. 379

- Influence of ageing on the high temperature behaviour of cementitious materials
  Frank DEHN and Klaus PISTOL
  ................................................................. 393

- Comparison of an approximated method with FEA calculations for the evaluation of the fire resistance of concrete tunnel sections
  Ulrich SCHNEIDER, Martin SCHNEIDER and Jean-Marc FRANSSEN
  ................................................................. 401
SESSION 6 - DETAILING AND CONNECTIONS

- Current research needs for the fire design of precast concrete building structures in U. S. practice
  Stephen PESSIKI
- Behaviour of a fibre reinforced concrete tunnel segment submitted to fire
  Adérito ALVES, João Paulo C. RODRIGUES, Joaquim BARROS, Lúcio LOURENÇO and Simão SANTOS
- Effect of the end and side connections to the hollowcore concrete flooring systems in fire
  Jeremy CHANG, Andrew H. BUCHANAN, Rajesh P. DHAKAL and Peter J. MOSS
- Influence of the temperature on the strength of single adhesive anchors under tensile load
  Fernando G. BRANCO, Maria de Lurdes BELGAS and António TADEU
- Push-out tests for partially encased beams at elevated temperature
  Paulo A. G. PILOTO, Ana B. Ramos GAVILÁN, Luís M. R. MESQUITA and Luísa BARREIRA
- Effects of elevated temperatures on properties concrete blocks
  Brian HARDIE, Ali NADJAI and Faris ALI

SESSION 7 - ASSESSMENT AND REPAIR AFTER FIRE

- Recent advances and research needs in the assessment of fire damaged concrete structures
  Roberto FELICETTI
- Approaches for the assessment of the residual strength of concrete exposed to fire
  Emmanuel ANNEREL and Luc TAERWE
- Repair of fire damaged RC beams with high performance fiber reinforced concrete jacket
  Alberto MEDA and Zila RINALDI
• Experimental study on triaxial behaviour of concrete after exposure to high temperature
  Teng Hooi TAN and Zhen LI .................................................................511

• NMR relaxometry measurements on heated cement paste
  Gijs van der HEIJDEN, Leo PEI and Henk HUININK ..................................523

• Estimation of fire damage in high-strength mortar mixed polypropylene fibers by ultrasonic tomography
  Sang Jun PARK and Yasuo TANIGAWA ....................................................529

SESSION 8 - REAL FIRES, LARGE-SCALE TESTS AND MODEL VALIDATION
..................................................................................................................539

• The need for large-scale fire tests
  Tom LENNON ..........................................................................................541

• Overview of fire testing of concrete and concrete protection systems for tunnels in Sweden
  Maria HJOHLMAN, Lars BOSTRÖM and Robert JANSSON ..........................551

• The Dalmarnock fire tests on a cast in-situ concrete structure
  Susan DEENY, Cecilia A. EMPIS, Tim STRATFORD, M. GILLIE and J. L. TORERO 559

• Effects of fire on a concrete structure: modelling the Windsor tower
  Ian FLETCHER, Stephen WELCH, Jorge A. CAPOTE, Daniel ALVEAR and Mariano LÁZARO 571

• Case study: concrete beam submitted to natural fire
  Nicolas TAILLEFER, Anne MULLER, Philippe FROMY and François DEMOUGE 583
PUSH-OUT TESTS FOR PARTIALLY ENCASED BEAMS AT ELEVATED TEMPERATURE

Paulo A. G. Piloto*  
Assistant Professor  
Polytechnic Institute of Bragança, Portugal.

Ana B. Ramos  
Gavilán  
Assistant Lecturer  
EPSZ – University of Salamanca, Spain.

Luisa Barreira  
Laboratory Technician  
Polytechnic Institute of Bragança, Portugal

Luis M. R. Mesquita  
Assistant Lecturer  
Polytechnic Institute of Bragança, Portugal.

Keywords: Elevated temperatures, bond strength, partially encased beams, push-out tests.

ABSTRACT

Partially encased beam is a steel-concrete composite element, made-up with a hot rolled profile and filled with concrete between flanges. Such structural element improves load-bearing capacity at elevated temperature. The mechanical and thermal interaction between steel and concrete is analysed for natural adherence at elevated temperature, using push-out tests to determine bond stress and thermal capacitance.

1. INTRODUCTION

Partially encased beam improves load-bearing capacity of steel profile at elevated temperature. Concrete between flanges reduces the heating rate through the steel profile under fire conditions. The condition for natural adherence is considered between steel and concrete. Bond stress should determine the strength limit state during splitting contact, being represented by the maximum shear stress at steel-concrete interface, which enables both materials to acquire composite action, see figure 1.

* Corresponding author - Department of Applied Mechanics. School of Technology and Management. Polytechnic Institute of Bragança – Campus Santa Apolónia. 5301-857 Bragança. Portugal. Tel.: +351 273 303157 Fax: +351 273 313051. e-mail: ppiloto@ipb.pt
When concrete is subjected to high temperatures, deterioration of mechanical properties arises and becomes an important factor to account for. Of particular importance is the loss in compressive strength and the collapse of bond between the cement paste and aggregates and the overall interface between steel and concrete. As the temperature approaches 250 °C dehydration begins to take place and the compressive strength begins to reduce. At 300 °C strength reduction would be in the range of 15-40% and at 550 °C reduction in compressive strength would typically range from 55% to 70% of its original value, [1], being this process almost irreversible.

Steel also presents mechanical properties degradation, in a different temperature scale. Temperature between 550 and 650 °C is responsible for residual stress cutback, reducing its elastic modulus and yield stress to 60% and 78%, respectively at 500 °C. Between 500 °C and 700 °C these values fall very much and after 700-800 °C steel becomes with a new austenitic phase, responsible for changing thermal and mechanical properties.

This work presents an experimental method for testing mechanical and thermal characteristics for the interface of partially encased beams at elevated temperature (400 °C), which will be valuable for the interface numerical modelling. Interface may be represented by non linear finite spring element, introducing contact stiffness and conductance.

Push-out test is based on axially load concrete blocks by means of a hydraulic jack, at high temperature level, measuring the relative displacement of concrete, determining the load histogram. Load is stepped incremented up to the ultimate state conditions (slipping of concrete or local concrete failure). A set of three tests were carried out.

2. SPECIMEN PREPARATION

Partially encased beams were prepared in laboratory with S275JR IPE 100 steel profile and low strength reinforced concrete. Reinforcement was attained with 8 [mm] diameter B500s rib bars welded to 4 [mm] plain diameter steel bars for stirrups, spaced every 135 [mm]. The interface
between steel and concrete is made without shear connectors, being natural adherence characterized by chemical and friction characteristics.

Minimum concrete cover shall be provided in order to ensure the safe transmission of bond forces, the protection of steel against corrosion (durability) and appropriate fire resistance. An external vibration and punching should guarantee the best consolidation and consequently the highest adherence between both materials, see figure 2. Cure was attained inside wet chamber at $23 \pm 1.7\, ^{\circ}C$ and at least 95% of relative humidity, during 28 days.

![Figure 2 - Specimen preparation.](image)

Every partially encased beam was set up with 650 [mm] long steel, filled with 540 [mm] long concrete block. Concrete should fill in between flanges and leave 110 [mm] air gap in the bottom flanged beam to allow measurement of concrete relative displacement.

Steel surface roughness was characterized according to ISO 4287 / 4288 standards, [2,3], along a specified evaluation length of 12.5 [mm], with 5 roughness sampling length of 2.5 [mm] each. Roughness was measured in every tested beam, each with 18 evaluation lengths. Arithmetic average roughness of 3.22 [\mu m] was determined which fall in-between expected values for this finished product (0.8 to 3.2 [\mu m]), [3]. This steel surface condition with concrete should produce a dry friction coefficient between 0.2 and 0.6, [4].

Specimens from steel profile were cut and normalized. Steel was received from manufacture with nominal yield stress equal to 490 [MPa], based on 6 tested specimens, with 11 [MPa] of standard deviation, [5].

Portland cement type II class CEM-II/B-L 32.5 N and siliceous aggregate were used in the concrete elaboration. Aggregate dimensions were restrained to web flange dimensions and also to volumetric concrete recover dimensions, using an average diameter equal to 4 [mm]. Specimens from concrete were produced and normalized for cubic compressive tests, according to EN 12390-2, [6]. Compressive strength for hardened concrete at 7 and at 28 days was determined. The average value of cube compressive strength allows concrete to be classified as C12/15. The residual humidity was determined equal to 6.75%.

Steel reinforcement was also classified according to standard procedures. From the 8 [mm] rebar B500s samples were prepared and tested according to standard [5], resulting yield stress
equal to 500 [MPa]. Specimens from steel stirrups were produced and normalized for tensile tests, using same standards, resulting yield stress equal to 200 [MPa].

3. EXPERIMENTAL TESTS FOR PUSH-OUT

For testing partially encased beams under elevated temperature, an insulated chamber was created, using an electro-ceramic device to increase temperature, see figure 3. Low thermal conductivity materials were applied in insulated chamber, using vermiculite plate and special thermo-resistant glass material.

![Figure 3 – Experimental set-up for push-out at elevated temperatures.](image)

A heating rate of 400 [°C/h] was applied up to the specified test temperature level (400 [°C]). After temperature stabilization, both concrete blocks were mechanically loaded using an incremental force system up to the maximum force level (maximum bond strength). After that, an incremental displacement method was applied to find out the post bond behaviour and the friction adherence.

3.1 Instrumentation

Tests were carried out using an axial loading system, especially designed for the push-out experiences. The hydraulic jack was connected to a load cell and will push-out concrete along the flanges and web of steel profile. At the other extremity another load cell was positioned for reaction force measurement. Concrete displacement was measured with a wire potentiometer position sensor (displacement transducer with an accuracy of +/- 0.1 [mm]), connected to an acquisition data centre.

To control the heating process and to measure temperature inside concrete and over the steel beam, type K thermocouples were positioned in specific places according to figure 4. An extra thermocouple was installed over the external concrete surface to track the heating temperature delivered by the heating power unit (bulk temperature).
3.2 Experimental results

Temperature was incremented inside insulated chamber, using an heating system with 70 [kVA], with electro-ceramic resistances applied to beam flanges. Temperature in steel and concrete follows the prescribed heating curve, as represented in figure 5.

After temperature stabilization, the mechanical loading process began. Concrete did not present any visible crack or crushing failure under axial load. Push-out experiments were conducted with breaking of natural adherence, as represented in figure 6. When adhesion bond breaks, a negative pending appears in load-displacement curve. The final curve behaviour corresponds to friction at interface level between concrete and steel surface.
Figure 6 - Load-displacement results at elevated temperature with natural adherence.

The maximum shear stress for natural bond adherence was determined for this temperature level for all tests. Differences between results may be justified by the fact that both concrete blocks travel at the same time for test 1, while test 2 presented local failure in one block, followed by large concrete displacement. The third test followed measured force displacement of the first test with higher maximum shear stress, but with the same characteristic behaviour. See table 1 for maximum bond strength.

Table 1 - Maximum bond strength results.

<table>
<thead>
<tr>
<th>Tested beam</th>
<th>Max. force [N]</th>
<th>Max. Bond stress [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>44142</td>
<td>0.293</td>
</tr>
<tr>
<td>Test 2</td>
<td>45487</td>
<td>0.302</td>
</tr>
<tr>
<td>Test 3</td>
<td>71689</td>
<td>0.476</td>
</tr>
</tbody>
</table>

4. NUMERICAL SIMULATION FOR PUSH-OUT

4.1 Numerical model

Thermal and mechanical non linear analyses were applied to simulate the experimental push-out tests for partially encased beams. Results are presented at elevated temperature, using the experimental bond behaviour between steel and concrete. A three dimensional finite element model was used to simulate thermal and mechanical analysis, base on Ansys finite element solutions, [7]. One part of the mesh was generated with finite shell elements to represent steel profile and the other mesh with solid and link elements to model reinforced concrete. These meshes were joined by non-linear finite spring elements used to simulate bond behaviour, see figure 7.
Push-out tests for partially encased beams at elevated temperature

Thermal model required non linear unsteady solutions for the experiments simulation at elevated temperatures, using appropriate thermal conductance for the interface between steel and reinforced concrete. An optimum design strategy was conducted to determine the best approach to this interface property, based on the minimization of the squared relative error between numerical temperature results and experimental measured temperature, see Eq. 1.

\[
OBJ = Error = \text{Min} \left( \sum_{t=1}^{\text{time}} \left( \frac{T_{t, \text{num}} - T_{t, \text{exp}}}{T_{t, \text{exp}}} \right)^2 \right)
\]  

This design variable (contact conductance) was estimated by numerical design optimization, using the first order method. The objective function, error, was considered to minimize differences between predicted and measured temperature values, in space and in time, according to the previous equation and the specific measured temperature values. The first order method uses gradients of the dependent variables with respect to the design variables. Gradient calculations are performed in order to determine a search direction. Each optimization iteration accounts for a number of sub-iterations that includes search direction, gradient computations and several thermal analyses loops. A conductance value of 100 [W/m²K] was considered for the interface steel-concrete, being in accordance with reference [8].

Thermal and mechanical properties were adopted from eurocode, [9,10], to simulate steel and concrete behaviour. An elasto-elliptic-plastic model was adopted for steel, using the appropriate experimental values. Concrete being quasi brittle material was simulated with different behaviour for tension and compression, as represented en figure 8. Concrete should be able to crack in tension and crush in compression, using appropriate failure criteria developed by William Warnke, [7].
The mechanical model requires material and geometrical non-linear solutions to simulate large displacement and an incremental displacement method (maximum 0.12 [mm]). Force was simulated by means of step incremental displacement, in the concrete nodes of the loading section. This loading condition satisfies numerical convergence, using Newton-Raphson displacement criteria.

The numerical model for reinforcement considered no movement between steel and concrete. Bond behaviour was represented by non linear finite spring elements, used in normal and tangential directions. Higher stiffness was applied to finite spring elements in normal direction to restrain contact between concrete and steel surfaces. Experimental measured stiffness was applied in tangential direction to validate experimental tests. Bond stress behaviour was modelled by finite spring elements with experimental nonlinear generalized force-deflection ability.

4.2 Numerical results

Numerical simulation predicts nodal temperature values as represented in figure 9. Good agreement was achieved between experimental results and numerical simulation.
Numerical results for the simulation of push-out tests are represented in figure 10. Collapse occurs between steel and concrete surface by adherence failure.

![Figure 10 - Numerical results for push-out test simulation.](image)

5. CONCLUSIONS

A new set-up was developed for push-out experiments at elevated temperature. More experiences were conducted at room temperature with natural adherence and with shear connectors welded to the web of steel profile.

Bond stress and bond behaviour were experimentally determined at elevated temperature for natural adherence. The results show that shear strength on web and flanges is higher than the expected value from eurocode ($\tau_{Kd}=0.2$ [MPa]), [11].

The results at elevated temperature presented a decrease in bond strength relative to room temperature results.

Numerical validation was also presented for this adherence condition, considering the corresponding experimental value for bond behaviour at contact elements. Interface between steel and concrete was numerically modelled by means of non-linear finite spring element, considering appropriate conductance and stiffness as presented.

6. REFERENCES


