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Abstract The purpose of this study was to examine the
relationship between the energy cost (C) and the 3D in-

tracycle velocity variation (IVV; swimming direction—x,

vertical—y and lateral—z axes) throughout the 200 m front
crawl event. Ten international level swimmers performed a

maximal 200 m front crawl swim followed by 50, 100 and

150 m bouts at the same pace as in the 200 m splits.
Oxygen consumption was measured during the bouts and

blood samples were collected before and after each one.

The C was calculated for each 50 m lap as the ratio of the
total energy expenditure (three energy pathways) to the

distance. A respiratory snorkel and valve system with low

hydrodynamic resistance was used to measure pulmonary
ventilation and to collect breathing air samples. Two above

water and four underwater cameras videotaped the swim

bouts and thereafter APAS was used to assess the centre of
mass IVV (x, y and z components). The increase in the

C was significantly associated with the increase in the IVV

in x for the first 50 m lap (R = -0.83, P \ 0.01). It is
concluded that the IVV relationship with C in a competi-

tive event does not present the direct relationship found in

the literature, revealing a great specificity, which suggests
that the relation between these two parameters could not be

used as a performance predictor in competitive events.

Keywords Biophysics ! Energetics ! Front crawl !
Kinematics

Introduction

Swimming is characterized by the intermittent application

of propulsive forces to overcome a velocity-dependent
water resistance (i.e. hydrodynamic drag force). Swimming

propulsion is produced by a combination of trunk, arm and

leg movements resulting in non-uniform body movement,
evidencing intracycle velocity variation (IVV; Barbosa

et al. 2010b; Vilas-Boas et al. 2010). As the four conven-

tional techniques use different combinations of trunk, arm
and leg actions, the IVV is quite different among them

(Craig and Pendergast 1979). The swimming velocity (v) is

the product of the stroke frequency (SF) by the distance the
body moves through the water within each stroke cycle

(SL). The generation of a given v requires a certain met-

abolic power output ( _Etot) that is also velocity dependent
(di Prampero 1986). Front crawl has been considered the

most efficient swimming technique due to the higher con-

tinuity of the arms propulsive actions (Barbosa et al.
2010b; Vilas-Boas et al. 2010). Moreover, when compared

to the other swimming techniques, the IVV in front crawl

has been considered as very low or even negligible (Alves
et al. 1996; Craig and Pendergast 1979; Holmer 1983;

Kjendlie et al. 2004), whereby its energetic profile was
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considered the lowest from all swim techniques (Barbosa

et al. 2006a; Holmer 1974). Meanwhile, several authors
pointed out that an increased IVV leads to a higher amount

of mechanical work, lowering swimming efficiency, as

compared to uniform movement; an increase of 10% of v
within a stroke cycle results in an additional work demand

of about 3% (Nigg 1983), which seems to be due to the

necessity of overcoming the hydrodynamic drag force
(Toussaint and Beek 1992). In this sense, the magnitude of

the IVV is considered as a valid estimator of swimming
efficiency (Vilas-Boas et al. 2010).

The number of studies regarding the relationship

between the energetics and the biomechanical domains in
competitive swimming is increasing (Vilas-Boas 2010).

Alves et al. (1996) observed a significant relationship

between the hip’s horizontal IVV (IVVx) and the energy
cost (C) of backstroke swimming at submaximal velocities.

The same authors did not report any relationship between

the C and the IVVx in front crawl, as well as (Kjendlie
et al. 2004) during 4 9 25 m front crawl at submaximal

velocities. For the breaststroke, Vilas-Boas (1996) found a

non-significant correlation between the C and the hip’s
IVVx, but when performing individual correlations both

variables were highly related. Concerning the butterfly,

Barbosa et al. (2005) concluded that high IVV was well
related with lower swimming efficiency (inducing an

increase in the C). In addition, Barbosa et al. (2006b) found

that the C increases were strongly related to the IVVx for
all swim techniques, when partial correlations controlling

the effect of v were computed.

The above reported studies assessed the relationship
between the IVV and the C throughout progressive and

intermittent protocols using a large swim velocity range

(Alves et al. 1996; Barbosa et al. 2005; Vilas-Boas 1996).
Moreover, the IVV was evaluated for an anatomical

landmark (i.e. hip) (Alves et al. 1996; Vilas-Boas 1996) or

the body centre of mass (Barbosa et al. 2005, 2006b).
Nevertheless, both studies only assessed the IVV in the

swimming direction, and the lateral and vertical directions

were not considered.
Complementarily, several works were published

regarding the stroke mechanics variations (Craig et al.

1985; Seifert and Chollet 2009; Barbosa et al. 2010a),
segmental or body kinematics (Figueiredo et al. 2009;

Psycharakis et al. 2010) and energetic variables (Ribeiro

et al. 2010; Fernandes et al. 2006; Reis et al. 2010).
However, to our knowledge, no attempt was made to assess

the relationships between the C and the IVV throughout a

swimming event.
The purpose of this study was to examine the relationships

between the centre of mass’ IVV in the three axes of motion

(swimming direction—x, vertical—y and lateral—z) and the
C of locomotion throughout the 200-m freestyle event.

Materials and methods

Subjects

Ten highly trained competitive male swimmers volun-
teered to participate in this study (mean ± 1SD: aged

21.6 ± 2.4 years; height 185.2 ± 6.8 cm; arm span

188.7 ± 8.4 cm; body mass 76.4 ± 6.1 kg; percentage of
adipose tissue 10.1 ± 1.8%). All subjects (mean perfor-

mance over a 200 m freestyle event = 91.6 ± 2.1% of the

25 m pool world record) had 11.0 ± 3.5 years experience
as competitive swimmers. All subjects gave their written

informed consent before participation. The study was

approved by the local ethics committee and was performed
according to the Declaration of Helsinki.

Experimental design

On the testing day, each swimmer performed an individual

warm-up, consisting of low to moderate intensity 1,000 m
aerobic swimming. Thereafter, swimmers performed a

200 m maximal front crawl bout. All tests were conducted

in a 25 m indoor swimming pool, using a push start and
open turns without gliding. After 90 min of active rest

interval, swimmers performed a 50 m front crawl bout at

the same speed obtained in the 200 m bout. Twenty-
four hours later, swimmers performed 150 and 100 m

bouts, with a 90 min active recovery. Swim pacing for the
50, 100 and 150 m bouts was controlled by a visual light

pacer placed in the bottom of the pool (TAR 1.1, GBK-

Electronics, Aveiro, Portugal). At the end of each test
blood lactate accumulation was measured. To simulate as

much as possible the 200 m test conditions, swimmers used

the respiratory snorkel and valve system also in the 50, 100
and 150 m swims.

Data collection and analysis

The 200 m bout was recorded with six stationary and

synchronized video cameras (Sony, DCR-HC42E, Tokyo,
Japan): four below (optical axes ranged from 75 to 110")

and two above the water surface (optical axes was *100").

The recorded space was calibrated with a volume
(3 9 2 9 3 m for the horizontal, vertical and lateral

directions) and 30 calibration points. Synchronization of

the images was attained using a pair of lights observable in
the field of view of each camera. One stroke cycle for each

50 m lap was analysed. Twenty-one anatomical landmarks

were used: the vertex of the head, seventh cervical verte-
bra, mandible (mental protuberance), and the right and left

tip of the third distal phalanx of the finger, wrist axis,

elbow axis, shoulder axis, hip axis, knee axis, ankle axis,
fifth metatarsophalangeal joint and the tip of the first
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phalanx. Three-dimensional reconstruction of the 21 body

landmarks, digitised manually and frame (50 Hz) by frame,
was obtained using APAS (Ariel Performance Analysis

System, Ariel Dynamics, Inc., USA) and computed using

DLT (Abdel-Aziz and Karara 1971). Zatsiorsky anatomical
model adapted by de Leva (1996), widely used in the lit-

erature (e.g. Barbosa et al. 2005; Figueiredo et al. 2011b),

was utilized. After residual analysis for a wide range of
cut-off frequencies, 6 Hz was selected as the optimal cut-

off frequency for the smoothing of the data using a low
pass digital filter incorporated in the software. Root mean

square reconstruction errors of 12 validation points on the

calibration frame, which did not serve as control points,
were, respectively for x, y and z axes: (1) 3.9, 3.7 and

3.3 mm for above the water view and (2) 3.4, 2.5 and

3.2 mm for the underwater view (for more detailed analysis
cf. Figueiredo et al. 2011a). These results showed good

accuracy as previously observed (Gourgoulis et al. 2008).

To determine the reliability of the digitizing process, a
swimmer was digitized ten times for all the six video

cameras through the stroke cycle. Small standard deviation

for the repeated digitisations indicated acceptable reliabil-
ity for velocity being 0.03, 0.02 and 0.03 m s-1 for vx, vy
and vz, respectively, similar to the ones reported by Psyc-

harakis and Sanders (2009).
CM’ velocity (vcm) was calculated by dividing the hor-

izontal displacement of the CM in one stroke cycle by the

total duration of the stroke cycle. The SL was the x dis-
placement of the CM during the stroke cycle. The SF was

determined from the time needed to complete a stroke

cycle. The centre of mass’ IVV in the three axes was
computed as the coefficient of variation (SD/mean) as

suggested before (Barbosa et al. 2005; Figueiredo et al.

2009; Vilas-Boas et al. 2010). The use of the coefficient of
variation seems to be the only sensitive approach to the

mean swimming velocity and to the dispersion of the

instantaneous velocity throughout the stroke cycle, and not
to a single or couple of instantaneous moments; therefore,

mathematically, it is the more accurate method for the

quantification of IVV (Vilas-Boas et al. 2010). In addition,
the coefficient of variation has been suggested as a reliable

statistic to distinguish the economy of swimming (Alves

et al. 1996; Barbosa et al. 2005; Nigg 1983; Vilas-Boas
1996).

Oxygen uptake (VO2) was recorded by the telemetric

gas exchange system (K4b2, Cosmed, Rome, Italy) con-
tinuously during the 200 m front crawl test. This equip-

ment was connected to the swimmer by a low

hydrodynamic resistance respiratory snorkel and valve
system previously validated (Keskinen et al. 2003).

Expired gas concentrations were measured breath by breath

and averaged every 5 s. Net VO2 was calculated subtract-
ing the resting VO2 from the measured VO2.

Before and after each test capillary blood samples (5 ll)

were collected from the earlobe to assess rest and postex-
ercise (at 1, 3, 5, and 7 min) blood lactate ([La]b) using a

portable lactate analyser (Lactate Pro, Arkray, Inc., Japan)

that has been shown to be accurate (Baldari et al. 2009).
The v for each lap was calculated by the ratio between

distance and time using a stopwatch.

C was obtained through the ratio between the _Etot and

the mean v, _Etot was considered as the sum of the three

energy sources (aerobic, alactic and lactic) as previously

proposed (Capelli et al. 1998; Figueiredo et al. 2011b;
Zamparo et al. 2011). The aerobic contribution (Aer) in

each of the four 50 m laps was calculated from the time

integral of the net VO2 versus time relationship (equivalent
of 20.9 kJ l O2

-1, assuming a respiratory quotient of 0.98).

The anaerobic contribution was obtained by the sum of the

energy derived from glycolysis (Anl) plus that derived
from phosphocreatine (PCr) splitting in the contracting

muscles (AnAl). Lactic contribution was considered as:

Anl ¼ b La½ $bnetM ð1Þ

where [La]bnet is the net accumulation of lactate after
exercise, b is the energy equivalent for lactate accumula-

tion in blood (2.7 ml O2 mM-1 kg-1 as used before, di

Prampero et al. 1978) and M is the mass of the subject.
Afterwards, Anl was then expressed in kJ assuming an

energy equivalent of 20.9 kJ l O2
-1 (for review see Zam-

paro et al. 2011).
Alactic contribution was considered as:

AnAl ¼ PCr 1' e't=s
! "

M ð2Þ

where t is the time duration, s is the time constant of PCr

splitting at work onset (considered to be 23.4 s, as pro-

posed by Binzoni et al. 1992), M is the mass of the subject
and PCr is the phosphocreatine concentration at rest. The

latter was assumed to be equal to 27.75 mM kg-1 muscle

(wet weight) in a maximally active muscle mass (Figuei-
redo et al. 2011b; Prampero et al. 2003). AnAl was

expressed in kJ by assuming a P/O2 ratio of 6.25 and an

energy equivalent of 0.468 kJ mM-1 for swimming max-
imal velocities (Capelli et al. 1998; Zamparo et al. 2011).

The AnAl contribution for each lap was then calculated as

the difference in the AnAl before and after each lap.

Statistical analysis

Mean (±1SD) computations for descriptive analysis were

obtained for all variables selected (data normal distribution

verified with Shapiro–Wilk’s test). A one-way repeated
measures ANOVA was used to compare the kinematical

variables along the 200 m event. When a significant

F value was achieved, Bonferroni post hoc procedure was
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performed to locate the pairwise differences. Linear

regressions between the energetic (C) and the biomechan-
ical (IVV in x, y and z axes) variables were computed, as

well as their coefficients of determination for each lap.

Partial correlations between the IVV (x, y and z) and the C,
controlling the effect of v, for each lap were also computed.

To further analyse the relationship between the energetic

and the biomechanical variables over the 200 m, involves a
repeated measurements design, a within subjects correla-

tion coefficient was reported, which accounts for the lack
of independence among the repeated measurements by

removing the variation between subjects, as proposed by

Bland and Altman (1995a).
Also, a between subjects correlation coefficient for

repeated measurements design (Bland and Altman 1995b)

was reported for the mean values of the 200 m, examining
whether subjects with a high value on the IVV (x, y and

z) also tend to have a high value on the C. All statistical

analysis was performed using STATA 10.1 (StataCorp,
USA) and the level of statistical significance was set at

P B 0.05. Since a limited sampled is used, effect size was

computed with Cohen’s f. It was considered a (Cohen
1988): (1) small effect size if 0 B |f| B 0.10; (2) medium

effect size if 0.10 \ |f| B 0.25 and; (3) large effect size if

|f| [ 0.25.

Results

Figure 1 shows the mean (±1SD) values of the biome-
chanical parameters assessed in each 50 m lap of the

200 m front crawl event. The v decreased significantly

from the first lap to the remain ones (F(3,27) = 24.58,
P \ 0.001, f = 1.26). The SL remained constant for the

first three laps, whereas a decrease was observed in the

fourth lap (F(3,27) = 4.56, P = 0.01, f = 0.32). SF only
presented differences from lap 1 to lap 3 (F(3,27) = 5.08,

P = 0.01, f = 0.39).

Figure 2 presents the relationship between the C and the
IVV (x, y and z) for each 50 m lap. The relationship
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between C and IVVx in the first 50 m lap was statistically

significant (R = -0.83, P = 0.003) evidencing that
decreases in the IVVx promoted an increase in the C. The

relationships computed for the other axes of motion (y and

z axes) and for the second, third and fourth 50 m laps
showed to be non-significant.

As v is a co-variable of the C and the IVV, partial

correlation values between the IVV (x, y and z) and the
C for each 50 m lap of the 200 m front crawl event were

computed (Table 1). Thus when controlling the v effect,
the same trend was observed as the linear regressions: only

the relationship between the C and the IVVx in the first

50 m lap was significant (R = -0.65, P = 0.05). So,
during this competitive event, increases in the IVVx were

explained by increases in the C, although only in the first

lap.
To further study the relationship of the energetics and

the biomechanical variables throughout the 200 m event,

within and between subjects, correlation coefficients were
computed (Table 2). Data showed an inverse relationship

between the C and the IVV (x, z) during the 200 m within

the same swimmer.

Discussion

The purpose of this study was to examine the relationship

between the body centre of mass’ IVV in the x, y and z axes
with the C during a 200 m front crawl event. The IVVx was

inversely associated with the C only for the first lap when

analysing each 50 m length. The IVVx and the IVVz were
also inversely related with the C, when considering the

within subject correlation for the repeated measures during

the 200 m event.
Previous studies have found a direct relationship between

the IVVx and the C, indicating that the IVV could be a valid

estimator of efficiency (Barbosa et al. 2005). However, this
was found for a wide range of v; to the best of our knowledge,

there is no study about IVV changes throughout a competi-

tive event. During the 200 m front crawl event the v and the
stroke parameters associated (i.e. SF and SL) changed, which

is in accordance with previous reports (Alberty et al. 2005;
Craig et al. 1985). The v of the first lap was higher than the

other ones, meaning that a higher water resistance had to be

overcome, since water resistance is related to v2. As the v is
maintained for the rest of the event, changes in the SF and the

SL occurs as a response to muscular fatigue (Figueiredo et al.

2010a; Caty et al. 2006; Stirn et al. 2011).
In the first lap, the association between the C and the

IVVx was of 69%, which evidences that swimmers who

performed faster had a higher C (di Prampero 1986), and
lower propelling efficiency (Toussaint et al. 1988a) pre-

senting lower/higher maximal/minimal v peaks and also

applying a better coordination (Seifert and Chollet 2009;
Seifert et al. 2010b). The latter means less time spent

between propulsive phases, and consequently lower

IVVx. However, even when velocity effect was controlled a
significant inverse relationship between the IVVx and the

C was found. At submaximal intensities, for the same

velocity, the best swimmers are characterized as being more
economic (i.e. presenting a lower C) (di Prampero 1986;

Fernandes et al. 2006), having higher arm stroke efficiency

(Seifert et al. 2010b; Toussaint 1990), higher SL (Craig et al.
1985; Seifert et al. 2010b) and higher lag time between

propulsive actions (Seifert et al. 2010b), implying a higher

IVVx. The presented relationship between the IVVx and the
C suggests that swimmers: (1) were not fatigued, since they

swam at a submaximal intensity for the first lap, as their goal

is to achieve the best performance over the 200 m; (2) may
had adopted different coordinative strategies to reach the

same goal, particularly at the SF values observed (Potdevin

et al. 2006), and at early stages of the event, which result in
C variations (Seifert et al. 2010a).

In all the remaining laps, no association was found

between the C and the IVV (x, y and z), even when partial

Table 1 Partial correlation values (N = 10), controlling the swimming velocity effect, between intracycle velocity variation (IVV) in swimming
direction (x), vertical (y) and lateral (z) axes and the energy cost (C) for each 50 m lap of the 200 m front crawl event

IVVx versus C IVVy versus C IVVz versus C

First lap R = -0.65 (P = 0.05) R = -0.07 (P = 0.85) R = -0.46 (P = 0.21)

Second lap R = -0.10 (P = 0.79) R = -0.11 (P = 0.78) R = -0.11 (P = 0.78)

Third lap R = -0.01 (P = 0.98) R = -0.33 (P = 0.39) R = -0.49 (P = 0.18)

Fourth lap R = -0.19 (P = 0.62) R = -0.05 (P = 0.91) R = 0.50 (P = 0.17)

Table 2 Within (N = 40) and between (N = 10) subjects correlation
coefficient values between intracycle velocity variation (IVV) in
swimming direction (x), vertical (y) and lateral (z) axes and the energy
cost (C) for the 200 m front crawl event (taking in consideration the
four studied laps)

Axis Within subjects
C versus IVV

Between subjects
C versus IVV

x R = -0.34 (P = 0.03) R = -0.33 (P = 0.39)

y R = 0.07 (P = 0.70) R = -0.35 (P = 0.38)

z R = -0.34 (P = 0.03) R = -0.27 (P = 0.48)
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correlations were computed. This might be explained by

the fact that in aquatic locomotion, total mechanical work
is the sum of the work needed to overcome external forces

(external work) and to accelerate and decelerate the limbs

with respect to the centre of mass (internal work) (Barbosa
et al. 2010b; Zamparo et al. 2005). External work is related

to the position and velocity changes of the CM, the IVV

being an estimation of it. Internal mechanical work is
linked to the segmental kinematics, as the SL and the SF,

which change during the course of the race (cf. Fig. 1). It
was reported by Zamparo et al. (2005) that internal work

has a cubic relationship with the SF (Wint = 38.2 SF3);

therefore, as it changes throughout the 200 m event, the
total mechanical work also varies. Indeed, if the total

mechanical work increases for the same overall efficiency,

the C rises as well (Overall efficiency = Wtot x C-1). Since
IVV do not take into account internal mechanical work, it

might have a significant influence in the small v range

when comparing to other incremental protocols (Barbosa
et al. 2005; Fernandes et al. 2006).

The C determinants (for a given v, technique, skill and

gender) are the work to overcome hydrodynamic resistance
(Wd) and the propelling efficiency; both expected to change

with the appearance of fatigue. During a race it is expected

that the propelling efficiency decrease and the Wd increa-
ses, and therefore the C would also increase (Figueiredo

et al. 2011b). In 200 m front crawl v diminishes during the

course of the event, propelling efficiency also decreases as
observed before (Figueiredo et al. 2011b). However, the SF

increased in the fourth lap, augmenting internal mechanical

work (probably increasing the C as well), as well as
increasing continuity of the propulsive actions (probably

diminishing the IVV) (Alberty et al. 2005; Figueiredo et al.

2010b). The Wd decreases also with the decrease of the
v (Toussaint et al. 1988b); nevertheless, the work that each

swimmer must produce to overcome hydrodynamic resis-

tance at a given v is widely variable and dependent on
individual morphology and technique (Vilas-Boas 1996;

Chatard et al. 1990).

At the muscle level, classic experiments have shown
that contraction type, length and speed, as well as fibre type

and the recruitment pattern influence force generation and,

therefore, metabolic cost, reflecting the effect of different
contraction parameters (Sih and Stuhmiller 2003). In the

200 m particular effort, Caty et al. (2006) and Figueiredo

et al. (2010a) found that muscular fatigue occur in the main
muscles involved in swimming, which is expected also to

influence the C more than the IVVx.

Psycharakis et al. (2010) found greater magnitude in the
IVVy and the IVVz axes than in the IVVx, but their role

and influence are not yet fully understood. In fact, in spite

of their possible influence on the IVVx and v, there is no
relationship with the C within each lap. This might be

related to the fact that, when normalizing the SD used to

calculate the coefficient of variation of the IVVy and the
IVVz to the swimming direction v, the variations decreased

to values ranging from 0.04 to 0.10 (unpublished data from

our group), being much smaller than the IVVx producing
perhaps small effect in the C.

When analysing each subject throughout the 200 m event

(within subject correlation) it was possible to observe a
significant inverse relationship, of low to moderate effect,

between the C and the IVV (x, y). These results showed the
same relation as in the first lap, however, a small variance

was explained (about 12%) probably due to the influence of

v changes in the IVV. It is suggested that the v changes and
fatigue had a higher effect in the C rather than in the IVV,

since C is variable (Figueiredo et al. 2011b) and the IVV is

stable (Psycharakis et al. 2010) during this event. Also,
several factors influence the C more than the IVV during a

competitive event, and so, the direct relationship between the

IVV and the C described in the literature for a large range of
velocities, seem not to be applied during a competitive event,

particularly the 200 m front crawl. This fact might dispel the

idea of a useful relationship between the IVV and the C as a
performance predictor in competitive events. In addition, the

between subjects correlation computed for the overall 200 m

(mean values) did not suggest that the swimmers with higher
C values had higher IVV (x, y and z) values.

Conclusion

It is concluded that for each lap no relationship occurs
between the IVV and the C, except for the first lap in the

swimming direction, where rises in the IVV determine a

lower C. The 200 m swimming event revealed a great
specificity, in opposition to the relationship described in the

literature between the IVV and the C, which suggests that

the relation between these two parameters could not be
used as a performance predictor in competitive events. In

the future, other factors should be taken into account/

studied (e.g. changes in coordination, peripheral fatigue) in
order to better understand the occurred changes.
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