Logo do repositório
 
A carregar...
Miniatura
Publicação

Training hidden markov models with the taguchi method

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
34_FINAL.PDF152 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In some control systems structures, like predictive control, mathematical models for the control process must be derived. Those models can be obtained by a broad class of methods like parametric models applied to experimental data. In this context, and for systems with multiple operation regimes, the Hidden Markov model, due to its properties, is a convincing choice. However the parameter estimation of this type of models involves the optimization of a non-convex cost function. So the Baum-Welch method only can find sub-optimal parameters. This article shows that the use of the Taguchi method minimizes the training algorithm sensibility local minima.

Descrição

Palavras-chave

Hidden Markov models Taguchi method Optimization problems

Contexto Educativo

Citação

Coelho, João; Cunha, José; Oliveira, Paulo (2010). Training hidden markov models with the taguchi method. In 9th Portuguese Conference on Automatic Control.

Projetos de investigação

Unidades organizacionais

Fascículo