13th Annual Congress of the
EUROPEAN COLLEGE OF SPORT SCIENCE
9-12 July 2008, ESTORIL - Portugal

BOOK OF ABSTRACTS

Edited by:
Cabri, J., Alves, F., Araújo, D., Barreiros, J., Diniz, J., Veloso, A.

Hosted by:
Faculdade de Motricidade Humana
Universidade Técnica de Lisboa
Portugal
European College of Sport Science:
Edited by Cabri, J., Alves, F., Araújo, D., Barreiros, J., Diniz, J., Veloso, A.

Copyright by European College of Sport Science

Conception & DTP: SporTools GmbH – Data management in sports
Cover: Susana Pina
Corrections: Magdalena Kots, Ana Faria, Jan Cabri, Roman Kosminski, Dana Jung, Maria Waltke, Claudia Wilms

Supported by:
SPORTOOLS GmbH
Data management in sports
Paul-Niessen-Str. 12
50969 Cologne, Germany
Organisation

Honorary Presidency
- Rector of the Universidade Técnica de Lisboa
- Mayor of the City of Oeiras
- Mayor of the City of Cascais
- Secretary of State of Youth and Sports

Congress Presidency
- Luís Sardinha, POR, Congress President
- José Alves Diniz, POR, Chair Local Organizing Committee
- António Veloso, POR, Co-Chair Local Organizing Committee
- Jan Cabri, POR, Chair Local Scientific Committee
- Francisco Alves, POR, Chair Local Scientific Committee

Congress Manager
- Maria Machado, POR

Local Organizing Committee
- Isabel Morais, POR
- Marisa Costa, POR
- Ana Faria, POR
- Catherine Hutsemékers, POR
- Magdalena Kots, AUT
- Susana Pina, POR
- Porfírio Trincheiras, POR

Local Scientific Committee
- Jan Cabri, POR
- Francisco Alves, POR
- Duarte Araújo, POR
- João Barreiros, POR
- José Diniz, POR
- António Veloso, POR

ECSS Executive Board
- President: Albert Gollhofer, GER
- President-Elect: Hans Hoppeler, CH
- Past President: Erich Müller, AUT
- General Secretary: Sigmund Loland, NOR
- Treasurer: Romain Meeusen, BEL

ECSS Scientific Board
- Chair: Tom Reilly, GBR
- Co-Chair: Anton Wagenmakers, GBR
- Peter Bártsc, GER
- Flemming Dela, DNK
- Werner Helsen, BEL
- Paavo Komi, FIN
- Gertrud Pfister, DEN

ECSS Scientific Committee
- Natalia Balague, ESP
- Jan Cabri, POR
- Daniela Caporossi, ITA
- Hans-Hermann Dickhuth, GER
- Nenad Dikic, SRB
- Joan Duda, GBR
- Michael Greay, DNK
- Daniel Green, GBR
- Steve Harridge, UK
- Luc van Loon, NLD
- Mike McNamee, GBR
- Caroline Nicol, FRA
- Pekka Oja, FIN
- Hermann Schwameder, GER
- Mark Williams, GBR

ECSS Office

European College of Sport Science
Am Sportpark Müngersdorf 6
50933 Cologne – Germany
Phone: +49 221 4982 7640, Fax: +49 221 4982 7650

- Thomas Delaveaux, Managing Director
- Elias Tsolakidis, Technical Director
- Juliane Melber, Office Secretary
Welcome

The European College of Sport Science (ECSS) welcomes you to Estoril for its 13th Annual Congress. Hosted by the Faculdade de Motricidade Humana of the Universidade Técnica de Lisboa, the ECSS is delighted to stage this major event at the wonderful and sunny coast of Estoril from 9 to 12 July 2008.

The 13th Annual Congress of the ECSS aims to provide an international forum for the presentation and discussion of the latest research in sports science and its related fields. The panel of distinguished scholars who are invited to share their expertise with the members of the scientific and professional community will, without any doubt, prove invaluable to its success.

The Scientific Programme is composed of more than 1,700 abstracts, which were accepted after being carefully reviewed. This year’s Congress is the largest in the history of the ECSS, underlining both the interest of the sport scientific community and the importance of the ECSS as an interdisciplinary forum for ongoing debate. In view of the multifaceted character of sport science, state-of-the-art presentations cover basic and applied sciences as they relate to sport, exercise and health. The presented abstracts comprise not only all relevant sub-disciplines of sport science but also all continents and 68 different nations. The abstracts are distributed among 4 Plenary Sessions, 36 Invited Symposia, 74 Thematic Sessions and 3 Poster Sessions, each presenting close to 400 Posters.

The choice of venue of the 13th Annual Congress of the ECSS shall provide you with a unique opportunity for either revisiting or an unforgettable first-time experience of the magic of Portugal.

On behalf of the ECSS we wish you all a very pleasant and productive stay in Estoril and hope that it will be both scientifically and socially successful.

José Alves Diniz
Chair Local Organizing Committee, Dean of the Faculdade de Motricidade Humana
Table of Contents

ORGANISATION ... 3

WELCOME .. 5

TABLE OF CONTENTS .. 7

WEDNESDAY, JULY 9th, 2008 .. 13

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:15 - 16:45</td>
<td>IS-BN01 Propulsive forces in water sports</td>
</tr>
<tr>
<td></td>
<td>IS-SH01 Challenges on children sport</td>
</tr>
<tr>
<td></td>
<td>IS-SH02 Physical Education and Teacher Preparation - Present and Future</td>
</tr>
<tr>
<td></td>
<td>OP-BN01 Biomechanics 1</td>
</tr>
<tr>
<td></td>
<td>OP-HF01 Health and Fitness 1</td>
</tr>
<tr>
<td></td>
<td>OP-ML01 Motor Learning 1</td>
</tr>
<tr>
<td></td>
<td>OP-NU01 Nutrition 1</td>
</tr>
<tr>
<td></td>
<td>OP-PED01 Physical Education 1 - Teachers Aspects</td>
</tr>
<tr>
<td></td>
<td>OP-PM01 Physiology 1 - Adaptation</td>
</tr>
<tr>
<td></td>
<td>OP-TT01 Training and Testing 1</td>
</tr>
<tr>
<td>17:15 - 18:45</td>
<td>PS-1 Genetics: The impact of molecular technology on the future of sports</td>
</tr>
</tbody>
</table>

THURSDAY, JULY 10th, 2008 .. 38

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 10:00</td>
<td>IS-BN02 Neuromechanics in aging</td>
</tr>
<tr>
<td></td>
<td>IS-PM01 Angiogenesis and exercise</td>
</tr>
<tr>
<td></td>
<td>IS-PM02 GSK Symposium: Nutrition for running</td>
</tr>
<tr>
<td></td>
<td>IS-SH03 Technology and performance in sport: historical perspectives</td>
</tr>
<tr>
<td></td>
<td>OP-HF02 Health and Fitness 2</td>
</tr>
<tr>
<td></td>
<td>OP-MB01 Molecular Biology 1</td>
</tr>
<tr>
<td></td>
<td>OP-PM02 Physiology 2 - Immunology</td>
</tr>
<tr>
<td></td>
<td>OP-PM03 Physiology 3 - Neuramuscular</td>
</tr>
<tr>
<td></td>
<td>OP-RE01 Rehabilitation 1</td>
</tr>
<tr>
<td></td>
<td>OP-SM01 Sports Medicine 1</td>
</tr>
<tr>
<td>10:15 - 11:45</td>
<td>IS-BN03 Biomechanics and performance in elite sports</td>
</tr>
<tr>
<td></td>
<td>IS-PM03 Features of the metabolic syndrome in children</td>
</tr>
<tr>
<td></td>
<td>IS-SH04 Physical activity and children's health</td>
</tr>
<tr>
<td></td>
<td>OP-PED02 Physical Education 2 - Training, Coaching</td>
</tr>
<tr>
<td></td>
<td>OP-PM04 Physiology 4 - Neuramuscular</td>
</tr>
<tr>
<td></td>
<td>OP-PM05 Physiology 5 - Conditions</td>
</tr>
<tr>
<td>Time</td>
<td>Session Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>08:30 - 10:00</td>
<td>IS-BN06 Specificity in training and testing</td>
</tr>
<tr>
<td></td>
<td>IS-PM08 Intermittent hypoxia for the improvement of performance</td>
</tr>
<tr>
<td></td>
<td>IS-SH05 Gender and football</td>
</tr>
<tr>
<td></td>
<td>OP-HF05 Health and Fitness 5 - Children</td>
</tr>
<tr>
<td></td>
<td>OP-HF06 Health and Fitness 6 - Obesity</td>
</tr>
<tr>
<td></td>
<td>OP-NU02 Nutrition 2</td>
</tr>
<tr>
<td></td>
<td>OP-PE03 Physical Education 3 - Youth</td>
</tr>
<tr>
<td></td>
<td>OP-PS04 Psychology 4 - General 1</td>
</tr>
<tr>
<td></td>
<td>OP-SM03 Sports Medicine 3 - Elite Athletes</td>
</tr>
<tr>
<td></td>
<td>OP-TT06 Training and Testing 6 - Failure</td>
</tr>
<tr>
<td>10:15 - 11:45</td>
<td>IS-BN07 What is controlling muscle tendon output?</td>
</tr>
<tr>
<td></td>
<td>IS-PM09 Mechanisms leading to the metabolic syndrome</td>
</tr>
<tr>
<td></td>
<td>IS-SH06 Decision-making in soccer</td>
</tr>
<tr>
<td></td>
<td>OP-BI02 Biochemistry 2</td>
</tr>
<tr>
<td></td>
<td>OP-BN03 Biomechanics 3 - Neuromuscular</td>
</tr>
<tr>
<td></td>
<td>OP-HF07 Health and Fitness 7 - Risk factors</td>
</tr>
<tr>
<td></td>
<td>OP-PH01 Philosophy</td>
</tr>
<tr>
<td></td>
<td>OP-P505 Psychology 5 - Coaching</td>
</tr>
<tr>
<td></td>
<td>OP-RE02 Rehabilitation 2 - Lower Limb</td>
</tr>
<tr>
<td></td>
<td>OP-TT07 Training and Testing 7 - Testing</td>
</tr>
<tr>
<td>12:00 - 13:15</td>
<td>PS-3 Injury prevention & motivated intervention programmes</td>
</tr>
<tr>
<td>13:15 - 14:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-BI02 Biochemistry 2</td>
</tr>
<tr>
<td></td>
<td>OP-BN02 Biomechanics 2</td>
</tr>
<tr>
<td></td>
<td>OP-HF03 Health and Fitness 3</td>
</tr>
<tr>
<td></td>
<td>OP-MB02 Molecular Biology 2</td>
</tr>
<tr>
<td></td>
<td>OP-ML02 Motor Learning 2</td>
</tr>
<tr>
<td></td>
<td>OP-NU03 Nutrition 3</td>
</tr>
<tr>
<td></td>
<td>OP-PE03 Physical Education 3</td>
</tr>
<tr>
<td></td>
<td>OP-PW03 Physiology 3</td>
</tr>
<tr>
<td></td>
<td>PP-ES03 Psychology 2</td>
</tr>
<tr>
<td></td>
<td>PP-RE02 Rehabilitation 2</td>
</tr>
</tbody>
</table>
15:15 - 16:45

IS-BN08 The point on the electrophysiological methods to study neuromuscular adaptations .. 481
IS-PM10 Methods of measuring body composition in interventions .. 482
IS-PS01 ECSS Position Statement: Testing of the physical condition in a population - how good are the methods? 483
OP-BN04 Biomechanics 4 - Injury ... 484
OP-HF08 Health and Fitness 8 - Testing Protocols .. 487
OP-ML02 Motor Learning 2 - General .. 490
OP-PE04 Physical Education 4 - Physical Activities .. 492
OP-PM11 Physiology 11 - Sports ... 494
OP-PM12 Physiology 12 - Thermoregulation ... 497
OP-TT08 Training and Testing 8 - Performance .. 499

17:15 - 18:45

IS-PM11 State of the art of molecular techniques and use in sports: sequencing, gene expression and proteomics 502
IS-PM12 Muscle lipids and insulin resistance ... 503
IS-SH07 Moving the body and its effect on the mind? .. 505
OP-BN05 Biomechanics 5 - Muscle, Tendon, Loading .. 506
OP-HF09 Health and Fitness 9 - Adolescents ... 509
OP-NU03 Nutrition 3 .. 511
OP-PM13 Physiology 13 - Muscle-Tendon .. 513
OP-PM14 Physiology 14 - Circulation .. 516
OP-PS06 Psychology 6 - General 2 ... 518
OP-TT09 Training and Testing 9 - Elite .. 521

SATURDAY, JULY 12th, 2008 .. 524

08:30 - 10:00 .. 524
IS-PM13 Evidence based sports physiotherapy in injury prevention ... 524
IS-PM14 EFSWA Exchange Symposium: Cardio-circulatory adaptation and efficiency in response to intensive physical training 525
IS-SH08 Talent development and sports career ... 526
IS-SH09 Unhealthy bodies? .. 527
OP-BN06 Biomechanics 6 - Kinematics ... 528
OP-MB02 Molecular Biology 2 .. 531
OP-PM15 Physiology 15 - General ... 533
OP-PM16 Physiology 16 - Muscle ... 536
OP-SO02 Sociology 2 .. 538
OP-TT10 Training and Testing 10 - Exercise ... 541

10:15 - 11:45 .. 543
IS-BN09 Limitations and advantages of musculoskeletal modelling ... 543
IS-PM15 Gatorade Sport Science Institute: The challenges of exercising in the heat ... 545
IS-PM16 JSFPSM Exchange Symposium ... 546
IS-SH10 Pain and injury in sport. Social and ethical perspectives .. 547
12:00 - 13:15 562
PS-4 Limitations in elite sports ... 562

14:15 - 15:15 .. 563
PP-BN03 Biomechanics 3 ... 563
PP-HF04 Health and Fitness 4 ... 575
PP-ML03 Motor Learning 3 .. 596
PP-NJ04 Nutrition 4 .. 601
PP-OS01 Other Sciences .. 607
PP-PE04 Physical Education 4 ... 612
PP-PM04 Physiology 4 ... 623
PP-PS03 Psychology 3 .. 661
PP-SM04 Sports Medicine 4 .. 672
PP-SO02 Sociology 2 .. 680
PP-TT04 Training and Testing 4 ... 684

AUTHORS INDEX .. 716
COMPARISON BETWEEN PHYSICAL ACTIVITY LEVELS IN MEN AND WOMEN INSTITUCIONALIZED ELDERLY WITH MTI ACTIGRAPH

Monteiro, A., Mota, P., Carvalho, J.
Polytechnic Institute of Bragança, Portugal

Introduction: Exact evaluation of the quantity and intensity of physical activity in daily life is considered very important due to the close relationship between physical activity level, functional decline and sedentary habits. Even moderate-to-vigorous intense physical activity (PA) intensity level is better when done regularly for a total of 30 minutes or longer on most or all days. We used in this study accelerometers to measured minute-by-minute the movement, to assess PA volume and intensity performed by women and men older adults in different groups. The objective of this study was to analyze the pattern of PA performed by the Women and Men elderly in their daily routine. Methods: The sample was divided into two different groups (79.04±7.5 years old, BMI: 26.0±4.0, 166 subjects constitute the women group (WG) and 131 belong to the men group (MG). The Physical activity levels were directly measured for seven consecutive days using a MTI Actigraph accelerometer model 7164. The assessment of the level of physical activity performed by each individual has been carried out using the values suggested by Freedson et al. (1998). We joint the moderate/vigorous PA intensities because we have a few values in vigorous intensity. The habitual physical activity performed by the groups has been monitored and registered during a complete week (activity performed in week days and weekend). The statistical procedures were the Descriptive Statistics (mean, standard deviation and frequency distribution) and a Student t-test was used to compare WG and MG on the physical activity (PA) performances. Results: The results provided are: (i) The mean PA lower at a week by hour (p<0.428), the mean PA lower at a weekend (p<0.893) and de mean PA lower at all week by hour (p<0.622) were slightly higher in the WG than MG. (ii) The mean PA moderate/vigorous at a week by hour (p<0.457), the mean PA moderate/vigorous at a weekend (p<0.053) and de mean PA moderate/vigorous at all week by hour (p<0.167) were slightly higher in the MG than WG. (iii) No statistics significance between groups was found in Lower PA and in moderate/vigorous PA. Conclusion: We conclude that the groups have an equal profile of performance in PA in Lower or moderate/ vigorous intensities. There was no statistic significance in every intensities.

AGING ASSOCIATION TO THE EVALUATION OF THE PHYSICAL CAPACITY IN INSTITUTIONALIZED OLD PEOPLE OF BOTH GENDER

Monteiro, A., Clemente, G., Mota, P., Carvalho, J.
Polytechnic Institute of Bragança, Portugal

Introduction: Recognising the benefits of regular physical exercise among aged people, the importance of knowing the factors that influence the participation of that population in the physical activity relies on the possibility of improving the intervention accuracy, the kinds of offer and activities. This way and bearing in mind the importance that physical activity assumes in life quality and activity performances, it is crucial to determine the levels of physical capacity, which is taken as one of the objectives of the physical activity, either at physical and physiological levels: to increase the physical capacity through the development, strength, resistance, flexibility, coordination and balance, as a way to overpass accurately and effortlessly the challenges of the daily activities, as well as diminishing the probability of the development of some degenerative chronic diseases. The aim of this current study was to assess the levels of Physical Capacity of aged individuals from both sexes, living in care homes and establishing a comparison with ageing. Methods: The sample is composed by institutionalized aged people, from care homes with ages from 68 to 96 (82.85±7.06). The women group (WG) was 18 subjects and the men group (MG) was 18 subjects too. We evaluated Body Mass Index (BMI) and to assess the physical capacity parameters we used the battery of tests developed by Riki and Jones (1999). The test items included: chair stand test (assess lower-body strength), arm curl test (measure upper-body strength), 6-minute walk test (assess aerobic endurance), chair sit-and-reach test (assess lower-body (primarily hamstring) flexibility), back scratch test (assess upper-body (shoulder) flexibility), and 8 feet up-and-go test (assess agility and dynamic balance). The used statistical procedures were the descriptive statistics (mean, standard deviation and frequency distribution), presentation of the higher and minimal values in relation to the variables dependent on sex. And the inferential statistics (non-parametric tests for independent samples and U Mann Whitney). Results: The following results have shown that in average statistics significance was found in BMI (p <0.004). In Rikly and Jones battery tests, no statistics significance was found in every test! Conclusion: The levels of physical capacity that the aged people from the sample show are very low nevertheless the male genre presents higher values in every tests, with the exception of those which assess the flexibility of the upper-body and lower-body.

RELATIONSHIP BETWEEN HEALTH-RELATED PHYSICAL FITNESS AND OBJECTIVE PHYSICAL ACTIVITY IN PORTUGUESE FEMALE ADOLESCENTS

Machado Rodrigues, A., Coelho e Silva, M., Mota, J.
University of Coimbra, Portugal

Discussion of physical fitness and its relationship with physical activity is more apparent in adults than in children and adolescents (Malina, 2001). A large portion of the variability in physical fitness is not accounted by physical activity (Malina, 2001). This suggests that, among pediatric subjects, other factors are involved and need to be considered, for example, growth, maturation, and other components of lifestyle such as television viewing (Katzmarzik et al., 1998). The current study examines the relationship between physical activity and physical fitness. The sample is composed of 221 female subjects (14.1±1.1 years) from Portuguese Midlands. Somatic characteristics included body weight, stature, sum of six skinfolds and umbilical circumference. Physical activity was estimated using an uni-axial accelerometer (Actigraph, model 7164) on five consecutive days assuming a criterion of 10h per day for inclusion. Health-related physical fitness was defined as one-mile run, sit-ups, sit-and-reach and 20-meter shuttle run. After presenting descriptive statistics, data analysis determined the correlation between indicators of health-related fitness and physical activity.

Coefficients of correlation between physical activity (counts/min) and the four indicators of health-related fitness ranged from -0.17 to +0.58. Between moderate-to-vigorous physical activity and health-related fitness, the magnitudes of correlations ranged from -0.13 through +0.58. Physical activity was significantly and positively correlated with one-mile run and 20-m shuttle-run performance. No significant relationship was found between physical activity and sit-ups or sit-and-reach.

In summary, the relationship between 3-day accelerometry data and physical fitness were no more than weak to moderate. The results highlight the complexity of assessing short-term physical activity as a predictor of fitness in adolescents.

References.