Utilize este identificador para referenciar este registo: http://hdl.handle.net/10198/858
Título: Lamb meat quality assessment by support vector machines
Autor: Cortez, Paulo
Portelinha, Manuel
Rodrigues, Sandra
Cadavez, Vasco
Teixeira, A.
Palavras-chave: Regression
Multilayer perceptrons
Support vector machines
Meat quality
Data mining
Feature selection
Data: 2006
Editora: Springer
Citação: Cortez, P.; Portelinha, M.; Rodrigues, Sandra; Cadavez, Vasco; Teixeira, Alfredo (2006) - Lamb meat quality assessment by support vector machines. Neural Processing Letters. ISSN 1370-4621. 24:1, p. 41-51
Resumo: The correct assessment of meat quality (i.e., to fulfill the consumer's needs) is crucial element within the meat industry. Although there are several factors that affect the perception of taste, tenderness is considered the most important characteristic. In this paper, a Feature Selection procedure, based on a Sensitivity Analysis, is combined with a Support Vector Machine, in order to predict lamb meat tenderness. This real-world problem is defined in terms of two difficult regression tasks, by modeling objective (e.g. Warner-Bratzler Shear force) and subjective (e.g. human taste panel) measurements. In both cases, the proposed solution is competitive when compared with other neural (e.g. Multilayer Perceptron) and Multiple Regression approaches.
URI: http://hdl.handle.net/10198/858
DOI: 10.1007/s11063-006-9009-6
ISSN: 1370-4621
Aparece nas colecções:CIMO - Artigos em Revistas Indexados à WoS/Scopus

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
lamb3.pdf146,62 kBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.