Biblioteca Digital do Instituto Politécnico de Bragança   Instituto Politécnico de Bragança

Biblioteca Digital do IPB >
Escola Superior de Tecnologia e Gestão >
Teses de Mestrado >
ET - Engenharia Electrotécnica >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10198/2852

Título: Use of bio-inspired techniques to solve complex engineering problems: industrial automation case study
Autor: Barbosa, José
Orientador: Leitão, Paulo
Palavras-chave: Bio-inspired
Self-organization
Automation
NetLogo
Issue Date: 2010
Editora: Instituto Politécnico de Bragança, Escola Superior de Tecnologia e Gestão
Citação: Barbosa, José Fernando Lopes (2010) - Use of bio-inspired techniques to solve complex engineering problems: industrial automation case study. Bragança: Escola Superior de Tecnologia e Gestão. Dissertação de Mestrado em Engenharia Electrotécnica
Resumo: Nowadays local markets have disappeared and the world lives in a global economy. Due to this reality, every company virtually competes with all others companies in the world. In addition to this, markets constantly search products with higher quality at lower costs, with high customization. Also, products tend to have a shorter period of life, making the demanding more intense. With this scenario, companies, to remain competitive, must constantly adapt themselves to the market changes, i.e., companies must exhibit a great degree of self-organization and self-adaptation. Biology with the millions of years of evolution may offer inspiration to develop new algorithms, methods and techniques to solve real complex problems. As an example, the behaviour of ants and bees, have inspired researchers in the pursuit of solutions to solve complex and evolvable engineering problems. This dissertation has the goal of explore the world of bio-inspired engineering. This is done by studying some of the bio-inspired solutions and searching for bio-inspired solutions to solve the daily problems. A more deep focus will be made to the engineering problems and particularly to the manufacturing domain. Multi-agent systems is a concept aligned with the bio-inspired principles offering a new approach to develop solutions that exhibit robustness, flexibility, responsiveness and re-configurability. In such distributed bio-inspired systems, the behaviour of each entity follows simple few rules, but the overall emergent behaviour is very complex to understand and to demonstrate. Therefore, the design and simulation of distributed agent-based solutions, and particularly those exhibiting self-organizing, are usually a hard task. Agent Based Modelling (ABM) tools simplifies this task by providing an environment for programming, modelling and simulating agent-based solutions, aiming to test and compare alternative model configurations. A deeply analysis of the existing ABM tools was also performed aiming to select the platform to be used in this work. Aiming to demonstrate the benefits of bio-inspired techniques for the industrial automation domain, a production system was used as case study for the development of a self-organizing agent-based system developed using the NetLogo tool. Hoje em dia os mercados locais desapareceram e o mundo vive numa economia global. Devido a esta realidade, cada companhia compete, virtualmente, com todas as outras companhias do mundo. A acrescentar a isto, os mercados estão constantemente à procura de produtos com maior qualidade a preços mais baixos e com um grande nível de customização Também, os produtos tendem a ter um tempo curto de vida, fazendo com que a procura seja mais intensa. Com este cenário, as companhias, para permanecer competitivas, têm que se adaptar constantemente de acordo com as mudanças de mercado, i.e., as companhias têm que exibir um alto grau de auto-organização e auto-adaptação. A biologia com os milhões de anos de evolução, pode oferecer inspiração para desenvolver novos algoritmos, métodos e técnicas para resolver problemas complexos reais. Como por exemplo, o comportamento das formigas e das abelhas inspiraram investigadores na descoberta de soluções para resolver problemas complexos e evolutivos de engenharia. Esta dissertação tem como objectivo explorar o mundo da engenharia bio-inspirada. Isto é feito através do estudo de algumas das soluções bio-inspiradas existentes e da procura de soluções bio-inspiradas para resolver os problemas do dia-a-dia. Uma atenção especial vai ser dada aos problemas de engenharia e particularmente aos problemas do domínio da manufactura. Os sistemas multi-agentes são um conceito que estão em linha com os princípios bio-inspirados oferecendo uma abordagem nova para desenvolver soluções que exibam robustez, flexibilidade, rapidez de resposta e reconfiguração. Nestes sistemas distribuídos bio-inspirados, o comportamento de cada entidade segue um pequeno conjunto de regras simples, mas o comportamento emergente global é muito complexo de perceber e de demonstrar. Por isso, o desenho e simulação de soluções distribuídas de agentes, e particularmente aqueles que exibem auto-organização, são normalmente uma tarefa árdua. As ferramentas de Modelação Baseada de Agentes (MBA) simplificam esta tarefa providenciando um ambiente para programar, modelar e simular, com o objectivo de testar e comparar diferentes configurações do modelo. Uma análise mais aprofundada das ferramentas MBA foi também efectuada tendo como objectivo seleccionar a plataforma a usar neste trabalho.
Arbitragem científica: yes
URI: http://hdl.handle.net/10198/2852
Appears in Collections:ET - Engenharia Electrotécnica

Files in This Item:

File Description SizeFormat
jose_barbosa_MEI_2010.pdf1,76 MBAdobe PDFView/Open

Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 


  © Instituto Politécnico de Bragança - Biblioteca Digital - Feedback - Statistics
  Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE