Utilize este identificador para referenciar este registo: http://hdl.handle.net/10198/2631
Título: Region-based clustering for lung segmentation in low-dose CT images
Autor: Monteiro, Fernando C.
Palavras-chave: Lung segmentation
Graph clustering
Watershed transform
Pulmonary CT image
Data: 2010
Editora: Theodore E. Simos, George Psihoyios, Ch. Tsitouras
Citação: Monteiro, Fernando C. (2010) - Region-based clustering for lung segmentation in low-dose CT images. In CNAAM: International Conference of Numerical Analysis and Applied Mathematics. Rhodes, Greece. ISBN 978-0-7354-0834-0. p.2061-2064.
Relatório da Série N.º: AIP Conference Proceedings;1281
Resumo: Lung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method.
URI: http://hdl.handle.net/10198/2631
DOI: 10.1063/1.3498413
ISBN: 978-0-7354-0834-0
Aparece nas colecções:ESTiG - Publicações em Proceedings Indexadas à WoS/Scopus

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ICNAAM2010_paper.pdf321,93 kBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.