Utilize este identificador para referenciar este registo: http://hdl.handle.net/10198/2218
Título: A new online identification methodology for flux and parameters estimation of vector controlled induction motors
Autor: Leite, V.
Araújo, R.
Freitas, D.
Palavras-chave: Kalman filters
Induction motors
Machine vector control
Magnetic flux
Magnetic flux
Matrix algebra
Rotors
State-space methods
Statistical analysis
Stators Magnetic flux
Data: 2003
Editora: IEEE
Citação: Leite, V.; Araújo, R.; Freitas, D. (2003) - A new online identification methodology for flux and parameters estimation of vector controlled induction motors. In IEEE International Electric Machines and Drives Conference. Madison, USA. p. 449-455. ISBN 0-7803-7817-2
Resumo: A new online identification methodology for estimation of the rotor flux components and the main electrical parameters of vector controlled induction motors is presented in this paper. The induction motor model is referred to the rotor reference frame for estimation of rotor flux and rotor parameters, and referred to the stator reference frame to estimate stator parameters. The stator parameters estimation is achieved by a prediction error method based on a model structure described by a linear regression that is independent of rotor speed and rotor parameters. The rotor flux components and rotor parameters are estimated by a reduced order extended Kalman filter, using a 4th-order state-space model structure where the state equation is described by matrices that are diagonal and independent of rotor speed as well as stator parameters. Both methods work in a boot-strap manner.
URI: http://hdl.handle.net/10198/2218
ISBN: 0-7803-7817-2
Versão do Editor: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1211302&tag=1
Aparece nas colecções:DE - Publicações em Proceedings Indexadas ao ISI/Scopus

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
avtl_IEMDC03_10790.pdf229,45 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.