Please use this identifier to cite or link to this item:
Title: Effectiveness factor for immobilized biocatalysts: two substratestwo products reactions
Authors: Ribeiro, Adriano S.
Ferreira, Olga
Macedo, Maria E.
Loureiro, José M.
Keywords: Biocatalysts
Mass-transfer limitations
Effectiveness factor
Issue Date: 2005
Citation: Ribeiro, Adriano S.; Ferreira, Olga; Macedo, Maria E.; Loureiro, José M. (2005) - Effectiveness factor for immobilized biocatalysts: two substratestwo products reactions. In 9th International Chemical Engeneering Conference: CHEMPOR. Coimbra. ISBN 972-8055-13-7
Abstract: Immobilized enzymes are being increasingly used as biocatalysts in numerous processes to obtain high-value products for the pharmaceutical, flavour and fragrance industries (Gandhi et al., 2000). The major advantages of immobilization include the increase in enzyme stability, the possibility of enzyme reutilization and the easy separation of the biocatalysts from the reaction mixture. However, it is necessary to account for mass transfer limitations that, under some conditions, may arise in these systems (Gómez et al., 2003; Jeison et al., 2003). These resistances comprise the effects of intraparticle diffusion and external mass-transfer. Given the complexity of the kinetics of multisubstrate enzyme reactions, reactor modelling studies that account for mass-transfer phenomena are so far limited to single-substrate ones (Gómez et al., 2003). To compare the observed reaction rate with the reaction rate in the absence of mass-transfer limitations, an overall effectiveness factor is usually calculated (Gómez et al., 2003; Jeison et al., 2003). In this work, a model is developed to calculate the overall effectiveness factor for immobilized enzymes that carry out irreversible two substrates-two products reactions following kinetic mechanisms such as the Ternary Complex or the Ping-Pong Bi-Bi with inhibition by the second substrate. The model has two dimensionless parameters for each substrate – Thiele modulus (reaction/intraparticle diffusion), Biot number (film diffusion/intraparticle diffusion) – and one related to the reaction kinetics. Their influence on the effectiveness factor is analysed. The results obtained can be applied in the design and simulation of enzymatic reactors.
Appears in Collections:DTQB - Artigos em Proceedings Não Indexados ao ISI/Scopus

Files in This Item:
File Description SizeFormat 
ESF42_Chempor2005.pdf209,07 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.