Biblioteca Digital do Instituto Politécnico de Bragança   Instituto Politécnico de Bragança

Biblioteca Digital do IPB >
Escola Superior de Tecnologia e Gestão >
Tecnologia Química e Biológica >
DTQB - Artigos em Revistas Indexados ao ISI >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10198/1746

Título: Thermodynamic modeling of several aqueous alkanol solutions containing amino acids with the perturbed-chain statistical associated fluid theory equation of state
Autor: Ferreira, Luísa
Breil, Martin
Pinho, Simão
Macedo, Eugénia A.
Mollerup, Jorgen
Palavras-chave: Amino acids
Solubility
Mixed solvents
SAFT
Issue Date: 2009
Editora: ACS
Citação: Ferreira, Luísa; Breil, Martin; Pinho, Simão; Molleruo, Jorgen (2009) - Thermodynamic modeling of several aqueous alkanol solutions containing amino acids with the perturbed-chain statistical associated fluid theory equation of state. Industrial Engineering Chemistry Research. ISSN 1520-5045. 48:11 p.5498-5505
Resumo: The perturbed-chain statistical associated fluid theory EoS was applied to model the solubilities of glycine, DL-alanine, L-serine, L-threonine, and L-isoleucine in pure water, pure alcohols (ethanol, 1-propanol, and 2-propanol) and in mixed solvent systems. Three pure component nonassociating parameters for the amino acids were fitted to the densities, activity and osmotic coefficients, vapor pressures, and water activity of their aqueous solutions. The solubilities of amino acids in pure and mixed solvent systems were calculated on the basis of the phase equilibrium conditions for a pure solid and a fluid phase. The hypothetical melting properties of each amino acid were fitted, to accurately correlate the solubilities in pure water. Only one temperature independent binary parameter is required for each amino acid/solvent pair. The model can accurately describe the solubility of the amino acids in water, but the correlation for the solubility in pure alcohols was not so satisfactory. The solubility in mixed solvents (ternary systems) was predicted on the basis of the modeling of the solubility in pure solvents, without any additional fitting of the parameters, and the results achieved were reasonable. Fitting the binary parameter for the pair amino acid/alcohol not to the solubility in pure alcohol, but to the solubility in the mixed solvent system, the description of the solubility in the mixed solvent systems was clearly improved and the results were in fair agreement with the experimental data for all mixture compositions. The results showed a global root-mean-square deviation in mole fraction of 0.0032 for correlation and 0.0070 for prediction.
URI: http://hdl.handle.net/10198/1746
ISSN: 1520-5045
Versão do Editor: http://pubs.acs.org/journal/iecred
Appears in Collections:DTQB - Artigos em Revistas Indexados ao ISI

Files in This Item:

File Description SizeFormat
IECR2009.pdf266,13 kBAdobe PDFView/Open
Restrict Access. You can request a copy!
5546 - resumo.pdf39,24 kBAdobe PDFView/Open

Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 


  © Instituto Politécnico de Bragança - Biblioteca Digital - Feedback - Statistics
  Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE