Biblioteca Digital do Instituto Politécnico de Bragança   Instituto Politécnico de Bragança

Biblioteca Digital do IPB >
Escola Superior de Tecnologia e Gestão >
Matemática >
DEMAT - Resumos em Proceedings Não Indexados ao ISI >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10198/1629

Título: Simulations of stirred yoghurt processing in plate heat exchangers. Part I: Rheological behaviour
Autor: Fernandes, Carla S.
Afonso, Isabel M.
Melo, Luis F.
Maia, João M.
Palavras-chave: Plate heat exchangers
Stirred yoghurt
Issue Date: 2003
Citação: Fernandes, Carla S.; Afonso, Isabel M.; Melo, Luis F.; Maia, João M. (2003) - Simulations of stirred yoghurt processing in plate heat exchangers. Part I: rheological behaviour. In 1st Annual European Rheology Conference. Guimarães.
Resumo: Thermal processing and manufacturing in the food industry involves heating and cooling of highly viscous fluids. In general, these fluids exhibit complex flow patterns and are dependent on temperature, shear rate, duration of shear and elastic properties. Since the main factor limiting heat transfer is the viscous behaviour of the fluids, models that can capture this are of major interest to optimize heat exchanger design and to proper control of the manufacturing processes. A typical non-Newtonian food fluid is yoghurt, the rheological properties of which are influenced by several factors related with the physical nature of yoghurt and the processing conditions. Rheologically, stirred yoghurt shows a typical Herschel-Bulkley-type behaviour, with a yield stress at low shear rates and a power-law behaviour at higher stresses. Also, its viscosity varies from being highly temperature dependent to being almost temperature independent, depending whether it is being processed at temperatures above or below 22 ºC, respectively. The aim of the first part of this work is to simulate the non-isothermal flow of stirred yoghurt in a plate heat-exchanger. In order to do so, three problems were solved simultaneously: two of heat conduction in the plates and one on non-isothermal flow in the channel. The simulation was carried out using POLYFLOW, the geometrical domain being constituted by three three-dimensional components: superior and inferior plates and the flow channel. The corrugation of the plates was assumed to have a sinusoidal variation along the heat-exchanger.
URI: http://hdl.handle.net/10198/1629
Appears in Collections:DEMAT - Resumos em Proceedings Não Indexados ao ISI

Files in This Item:

File Description SizeFormat
AERC2003.pdf900,7 kBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 


  © Instituto Politécnico de Bragança - Biblioteca Digital - Feedback - Statistics
  Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE