Utilize este identificador para referenciar este registo: http://hdl.handle.net/10198/11888
Título: Long term solar radiation forecast using computational intelligence methods
Autor: Coelho, J.P.
Palavras-chave: Computational intelligence
Data: 2014
Citação: Coelho, J.P. (2015) - Long term solar radiation forecast using computational intelligence methods. Applied Computational Intelligence and Soft Computing. Portugal
Resumo: The point prediction quality is closely related to the model that explains the dynamic of the observed process. Sometimes the model can be obtained by simple algebraic equations but, in the majority of the physical systems, the relevant reality is too hard to model with simple ordinary differential or difference equations. This is the case of systems with nonlinear or nonstationary behaviour which require more complex models. The discrete time-series problem, obtained by sampling the solar radiation, can be framed in this type of situation. By observing the collected data it is possible to distinguish multiple regimes. Additionally, due to atmospheric disturbances such as clouds, the temporal structure between samples is complex and is best described by nonlinear models. This paper reports the solar radiation prediction by using hybrid model that combines support vector regression paradigm and Markov chains. The hybrid model performance is compared with the one obtained by using other methods like autoregressive (AR) filters, Markov AR models, and artificial neural networks. The results obtained suggests an increasing prediction performance of the hybrid model regarding both the prediction error and dynamic behaviour.
URI: http://hdl.handle.net/10198/11888
Aparece nas colecções:DE - Artigos em Revistas Não Indexados ao ISI/Scopus

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
729316.pdf6,17 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.