THE SECOND NORTH AND EAST EUROPEAN CONGRESS ON FOOD

NEEFood - 2013
Kyiv

May 26-29, 2013

Organized by:
National University of Food Technologies

and
Association «Higher Educational Institutions and Enterprises of Food Industry UkrUFoST»

BOOK OF ABSTRACTS

In cooperation with:

NUFT, Kyiv, Ukraine
UDC 664

ISBN 978-966-612-141-0

Collection of abstracts by leading scientists, specialists and young researchers in the field of food science, technology, chemistry, economics and management presented to the Congress.

The congress addressed the following topics:
Food expertise and safety
Novel Systems for Food Chain
Natural Bioactive Compounds, Functional and Traditional Food Products
Global challenges and competitiveness

Recommended for teaching staff, engineering and technological personnel, managers of food industry

Published in authors’ edition

Recommended by the Academic Council of National University of Food Technologies

Minutes № 9, 24.04.2013

ISBN 978-966-612-141-0 UDK 664

© NUFT, 2013

UDK 664

ISBN 978-966-612-141-0

Видання містить тези доповідей провідних вчених, спеціалістів та молодих науковців у галузі харчової науки, техніки, технології, хімії та економіки і управління - учасників Другого північно- та східно-європейського конгресу з харчової науки (NEEFood-2013).

Проблематика конгресу:
Експертиза та безпека харчових продуктів і виробництв
Новітні системи в харчовому ланцюзі
Натуральні біоактивні сполукі, функціональні та традиційні харчові продукти
Глобальні виклики та конкурентоспроможність

Для викладачів, наукових працівників, інженерно-технічного складу та керівників підприємств харчової промисловості

Видано в авторській редакції

Рекомендовано Вченою радою Національного університету харчових технологій

Протокол № 9 від 24.04.2013 р.

ISBN 978-966-612-141-0 UDK 664

© НУХТ, 2013

© NUFT, 2013
Section FOOD EXPERTISE AND SAFETY

Levandovsky L., Oliynichuk A., Chalova T.
DIRECTIONS OF ECOLOGICAL SAFETY INCREASING OF ALCOHOL BIOTECHNOLOGY 109

Bessarab A., Shutyuk V.
THE FORMATION OF CARCINOGENIC COMPOUNDS IN PRODUCTION OF FOODSTUFFS 109

Nychyk O., Salavor O.
YELLOW SUGARS FROM BEETS AND ENVIRONMENTAL SAFETY .. 110

Shylofost T., Semenova O., Bublienko N., Smirnova J.
BIOCHEMICAL PURIFICATION OF WASTEWATER OIL PROCESSING PRODUCTS 110

Lupyna T., Gregirchak N.
MINIMAL BACTERICIDAL CONCENTRATIONS OF DISINFECTANTS BASED ON SALTS OF
POLYHEXAMETHYLENEGUANIDINE .. 111

Rushai O., Gregirchak N.
YEAST SURVIVING IN WHEAT BREAD ... 111

Ischenko V., Polumbryk O., Panchuk T.
DEVELOPING METHODOLOGY FOR ATOMIC ABSORPTION DETERMINATION OF
METALLIC ELEMENTS IN NATURAL WATER .. 112

Goots V., Koval O.
MATHEMATICAL MODELING OF FOOD QUALITY ... 112

Koval O., Goots V.
FOOD PRODUCTS ASSESSMENT OF QUALITY .. 113

Koval O., Reznikov S.
DEFINING THE TERM OF LIFE OF FOOD PRODUCTS .. 113

Bovkun A., Naumenko O.
THE INFLUENCE OF BACTERIOPHAGE CONTAMINATION ON QUALITY OF DAIRY
PRODUCTS .. 114

Saliuk A., Kotinskiy A., Zhadan S.
ACIDOGENIC TRASFORMATION OF FOOD-PROCESSING WASTES FOR BIOPLASTIC
PRODUCTION .. 114

Arsenieva L., Zolotoverh K., Antoniuk M.
SUBSTANTIAION OF THE FEASIBILITY OF USING DRY STARTER CULTURES VIVO
PRODUCTION OF DAIRY PRODUCTS WITH PROBIOTIC PROPERTIES IN PUBLIC
CATERING ESTABLISHMENTS .. 115

Arkipova G., Kvasha O., Keller A.
VALUE OF GLUTEN - FREE DIET FOR THE TREATMENT OF CELIAC DISEASE WITH
CHILDREN .. 115

Vorontsov O.
APPLICABILITY OF ANAEROBIC FERMENTATION FOR FOOD PROCESSING
WASTEWATER TREATMENT IN UKRAINE .. 116

Meletev A., Deriy E., Litvynchuk S., Nosenko V.
THE RESEARCH OF METHODS OF THE ANALYSIS OF SUGARS IN THE PRODUCTION
OF BEER .. 116

Litvynchuk S., Nosenko V., Meletev A., Hutsalo I.
A NEW METHOD OF ANALYSIS OF GRANULATED HOPS .. 117

Semenova O., Bubliенко N., Smirnova J., Tkachenko T.
INNOVATIVE WASTEWATER DAIRY .. 117

Slobodyan O., Zaets V., Neshechadim L.
WARNING OF ORIGIN OF FIRE IS ON THE ENTERPRISES OF FOOD INDUSTRY 118

Kovalenko S.
ENSURING FIRE SAFETY ... 118

Sydorchenko O., Zakharchenko T.
THE ORGANIZATION OF MEDICAL AND PREVENTIVE NUTRITION IS ONE OF THE
WAYS TO PROTECT THE LIVES AND HEALTH OF WORKERS .. 119

Gavva O., Tokarchuk S.
DEVELOPMENT OF SMART-PACKING SYSTEM WITH ACTIVE OXYGEN UPTAKE 119
Iakymchuk M., Bespalko A.
METHOD OF FORMING PACKAGING EQUIPMENT BASED ON MECHATRONIC SYSTEMS MODULES... 171
Palchik O., Levchenko O.
AUTOMATED CONTROL OF BOILER PLANT USING ENERGY-SAVING TECHNOLOGIES........ 171
Ryabtsev V., Sidletskyi V.
VALIDATION OF FOOD INDUSTRY ENTERPRISES CONTROL SYSTEMS... 172
Yarova T.
APPLICATION THE DYNAMICAL SYSTEM THEORY (DST)... 172
Myronchuk V., Pidhornyi V.
THE INFLUENCE OF SUCROSE CRYSTALLIZATION ON CENTRED JOINTING PROPERTIES OF SUGAR MASSECUITES... 173
Tarasenko S., Kolomiets D., Shulika V., Galushko M.
CURRENT ONGOING MONITORING AND PROSPECTS OF PREDICTION OF THE CONFECTIONARY PRODUCTS STATE WITH NEW CAPACITIVE TRANSDUCERS... 173

Section NATURAL BIOACTIVE COMPOUNDS, FUNCTIONAL AND TRADITIONAL FOOD PRODUCTS Sector A

Guimarães R., Barros L., S. Reis F., Dueñas M., Carvalho Ana M.a, Santos-Buelga C., João R.P. Queiroz M., C.F.R. Ferreira I.
PHENOLIC PROFILE OF WILD FRUITS OF ROSA CANINA SL. FROM NORTHEAST PORTUGAL.. 174
A COMPARATIVE STUDY OF CHEMICAL COMPOSITION OF MORCHELLA ESCULENTA (L.) PERS. FROM PORTUGAL AND SERBIA SANDRINA... 175
Kolesnikov B., Klochkova N., Shamtsyan M.
OBTAINING HYDROPHOBINS FROM SUBMERGED CULTURES OF THE FUNGUS.......................... 175
Stetsenko N., Kravetska S.
THE USE OF FLAX SEEDS IN HEALTHY PRODUCTS TECHNOLOGIES... 176
Zinchenko N., Simurova N.
BIOORGANIC COMPLEX DERIVED FROM JERUSALEM ARTICHOKE PUREE... 176
Popova I., Sliva J.
OBTAINING FRUCTOSE – OLGOSACCHARIDE MIXTURES BY APPLYING ELECTRIC PULSE TECHNOLOGIES.. 177
Kryzhova Yu.
ENRICHMENT OF MEAT PRODUCTS BY IODINE THROUGH THE USE OF SEAWEED...................... 177
Khariton T.
USE OF EXTRUDATE GRAIN CROPS TO ENRICH TRADITIONAL FOOD ENVIRONMENTS.......... 178
Steshenko O., Aresenieva L.
PERSPECTIVES OF PRODUCTS CREATION WITH ADAPTATION EFFECT FOR SPORTSMEN... 178
Drokov V., Nosenko T., Olishevskiy V., Marynin A.
REMOVAL OF PHOSPHOLIPIDS FROM VEGETABLE OILS USING OF ALUMINUM OXIDE NANOPARTICLES .. 179
Kotinskyi A., Saltuk A.
THE EFFECT OF GLYCINE ON THE GROWTH OF THE MICROALGAE SPIRULINA PLATENSIS... 179
Frolova N., Chepel N., Naumenko K., Usatiuk O.
INVESTIGATION OF SEPARATION METHOD FOR AROMATIC SUBSTANCES OUT OF ESSENTIAL OILS .. 180
Ostrovska O., Yuryk I.
ON NONLINEAR MATHEMATICAL MODELS IN TECHNOLOGICAL PROCESSES......................... 180
Polumbryk M., Kravchenko V., Kirkova M.
EFFICIENCY OF FOOD FORTIFICATION PRODUCTS WITH ZINC REQUIRED TO CONTROL ZINC DEFICIENCY DISORDERS... 181
Yemelyanova N., Mukoid R.
IMPROVING OF OAT MALT TECHNOLOGY... 181
Mushrooms contain a huge diversity of biomolecules with bioactive properties that should be explored. *Morchella esculenta* (L.) Pers. (morel) is one of the most highly prized edible mushrooms in the world.

In the present work a comparative study on the chemical composition (nutritional value, primary and secondary metabolites) of the two samples from two countries, Portugal (SP) and Serbia (SS), was performed. Carbohydrates were the most abundant macronutrients, followed by proteins and ash. Fat contents were low and similar in both samples. The energetic contribution of SS was slightly higher due to the higher contribution of carbohydrates. Regarding the sugars, mannitol and trehalose were found in both samples, but fructose was only found in SP. Polyunsaturated fatty acids predominated over monounsaturated and saturated fatty acids. Linoleic, oleic and palmitic acids were abundant in both samples, but only SS gave considerable amounts of α-linolenic acid. Concerning the tocopherols, the α-, γ- and δ-tocopherols were also quantified in both samples; γ- and δ-tocopherols were observed in higher levels in SS. Oxalic and fumaric acids were in both samples; malic acid was found in SP, while quinic and citric acids were observed in SS. Finally, protocatechuic and p-hydroxybenzoic acids were found in both samples, but p-coumaric acid was quantified in SP. As far as we know, this is the first study reporting the chemical composition of morel samples from Portugal and Serbia.

Acknowledgments

The authors are grateful to FCT (Portugal) and FEDER-COMPETE/QREN/EU (research project PTDC/AGR-ALI/110062/2009; bilateral cooperation action Portugal/Serbia 2011; strategic projects PEst-OE/AGR/UI0690/2011 and PEst-C/UI/0686/2011), and to Serbian Ministry of Education and Science (grant number 173032) for financial support. S.A. Heleno (BD/70304/2010) and L. Barros (BDP/4609/2008) also thank FCT, POPH-QREN and FSE.

KEY WORDS: Morchella esculenta; nutrients; chemical composition

A COMPARATIVE STUDY OF CHEMICAL COMPOSITION OF MORCHELLA ESCULENTA (L.) PERS. FROM PORTUGAL AND SERBIA SANDRINA

A. Heleno1,2, Dejan Stojković3, Lillian Barros1, Filipa S. Reis2, Jasmina Glamočlija5, Marina Soković3, Anabela Martins1, Maria Joao R.P. Queiroz2, Isabel C.F.R. Ferreira3

1Montain Research Centre, School of Agriculture, Santa Apolonia, ap. 1172, 5301-854 Bragança, Portugal
2Centre of Chemistry, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
3University of Belgrade Institute for Biological Research «Sinisa Stankovic», Department of Plant Physiology, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia

In the present work a comparative study on the chemical composition (nutritional value, primary and secondary metabolites) of the two samples from two countries, Portugal (SP) and Serbia (SS), was performed. Carbohydrates were the most abundant macronutrients, followed by proteins and ash. Fat contents were low and similar in both samples. The energetic contribution of SS was slightly higher due to the higher contribution of carbohydrates. Regarding the sugars, mannitol and trehalose were found in both samples, but fructose was only found in SP. Polyunsaturated fatty acids predominated over monounsaturated and saturated fatty acids. Linoleic, oleic and palmitic acids were abundant in both samples, but only SS gave considerable amounts of α-linolenic acid. Concerning the tocopherols, the α-, γ- and δ-tocopherols were also quantified in both samples; γ- and δ-tocopherols were observed in higher levels in SS. Oxalic and fumaric acids were in both samples; malic acid was found in SP, while quinic and citric acids were observed in SS. Finally, protocatechuic and p-hydroxybenzoic acids were found in both samples, but p-coumaric acid was quantified in SP. As far as we know, this is the first study reporting the chemical composition of morel samples from Portugal and Serbia.

Acknowledgments

The authors are grateful to FCT (Portugal) and FEDER-COMPETE/QREN/EU (research project PTDC/AGR-ALI/110062/2009; bilateral cooperation action Portugal/Serbia 2011; strategic projects PEst-OE/AGR/UI0690/2011 and PEst-C/UI/0686/2011), and to Serbian Ministry of Education and Science (grant number 173032) for financial support. S.A. Heleno (BD/70304/2010) and L. Barros (BDP/4609/2008) also thank FCT, POPH-QREN and FSE.

KEY WORDS: Morchella esculenta; nutrients; chemical composition

OBTAINING HYDROPHOBINS FROM SUBMERGED CULTURES OF THE FUNGUS

Boris Kolesnikov, Natalia Klochkova, Mark Shamtsyan

Str. Petersburg State Institute of Technology (Technical University), 190013, Russia, Saint-Petersburg, Mosovsky Ave., 26, kalelovo@mail.ru

Fungi are promising objects of biotechnology. Not long ago special proteins were found in mushrooms, which were later called hydrophobins. Hydrophobins are low molecular proteins (7-9 kDa), which have surface-active properties. They are able to self-assemble into amphipathic membranes at hydrophilic/hydrophobic interfaces. Also they can change the properties of the hydrophobic and hydrophilic surfaces and significantly reduce the surface tension of water. These unique properties open up broad prospects for application of hydrophobins. Such hydrophobin emulsions in their taste and consistency can resemble food fat. Combined with the ability of hydrophobins to stabilize the foam it makes promising their use in the food industry. Also the area of possible application of hydrophobins is tissue engineering, pharmaceuticals, etc.

As an object of research, we chose the filamentous fungus *Trichoderma sp.* The method of submerge cultivation was used to grow fungus. Fungal culture was grown for 3 days on glucose-peptone medium. After that the culture liquid was subjected to successive freeze-thaw for destruction of the cell wall of the fungus and increase the yield of hydrophobin into the culture medium. Culture liquid was foamed with aerator, then the resulting foam was dissolved in 70% ethanol. Undissolved substances and particles of biomass were separated by centrifugation at 6000 r / min. After that, ethanol was evaporated from solution on a rotary evaporator and the remaining aqueous solution was freeze-dried. The protein concentration in the obtained extracts was determined using the method of Lowry. The presence of hydrophobins in the obtained extracts HPLC method was used. Foam-stabilizing activity of obtained extracts was tested. For comparison we selected sodium caseinate - one of the most popular at present food foam stabilizers. 0.1% solution of the extract and 0.5% solution of sodium caseinate were prepared. In both solutions 0.5% xanthan was added as a thickener. The two solutions were foamed with aerator and then the volume of foam was measured every week for 2 month. The use of our extracts yielded resistant foam, and the loss of foam in the air phase for 9 weeks was not more then 45%. In the sample, stabilized with sodium caseinate, a week later there was complete loss of air phase and the deposition of foam.

KEY WORDS: Green tea, polyphenols, theanine

Congress NEEFood – 2013 | Book of Abstracts