INTRODUCTION

Cytisus multiflorus is a leguminous shrub native from Iberian Peninsula that is distributed in the south-west Mediterranean region. This plant is used in folk medicine and it is claimed to have various health benefits, including anti-inflammatory properties [1]. Yet, the anti-inflammatory usage of _C. multiflorus_ is totally based on the available ethnopharmacological information while no scientific data on this capacity and on molecular targets has been reported for the plant. Hence, the present work aims to clarify the possible anti-inflammatory mechanisms of _C. multiflorus_.

METHODS

A purified ethanolic extract was prepared [1], and its antioxidant capacity was evaluated through the DPPH radical scavenging [2] and reducing power [3] assays. Moreover, to test the anti-inflammatory properties of the _C. multiflorus_ extract, the nitric oxide (NO) production scavenging activity and cytotoxicity of the distinct concentrations of the extract were assessed on a lipopolysaccharide-stimulated Raw 264.7 macrophages model, and measured by the Griess and the MTT reduction colorimetric assays respectively. Furthermore, the effects on two proteins that are potential targets to prevent or treat chronic inflammation, namely cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS), were estimated by Western Blot analysis.

RESULTS AND DISCUSSION

Tab.1 - Antioxidant activity of _C. multiflorus_ ethanolic extract

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean Values ± standard derivations of three replicate analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>* DPPH (EC50) (µg/ml)</td>
<td>* Reducing Power (EC50) (µg/ml)</td>
</tr>
<tr>
<td>13.4 ± 1.0</td>
<td>11.4 ± 2.1</td>
</tr>
</tbody>
</table>

As indicated by its low EC50 values (13.4±1.0 and 11.4±2.1 µg/ml for DPPH scavenging potential and reducing power, respectively), the _C. multiflorus_ ethanolic extract has a high antioxidant capacity. Moreover, the extract did not cause cytotoxicity against Raw 264.7 macrophages for concentrations up to 325 µg/ml.

Fig.1 - Cytisus multiflorus

Fig.2 - Effect of _C. multiflorus_ extract (CME) in the nitrite production of macrophages stimulated with LPS 1 µg/mL (* relative to LPS)

The treatment of this cell line with 160 µg/mL and 325 µg/mL of the purified extract induced a decrease in the levels of NO of 24% and 32%, respectively. Furthermore, despite no statistically significant changes on COX-2 levels were observed, iNOS expression was significantly diminished by the treatment with the highest concentration of the extract.

CONCLUSION

Overall, the present results suggest that _C. multiflorus_ actually exerts an anti-inflammatory action which is, at least partially, mediated through the inhibition of iNOS expression.

REFERENCES

ACKNOWLEDGEMENTS

The authors acknowledge the financial support provided by the FCT to CERNAS (project PestOE/AGR/UI0681/CNC/CEF/2011). Olivia R. Pereira was supported by a PhD grant (SFRH/PROTEC/49600/2009).