11º Encontro de Química dos Alimentos

Qualidade dos Alimentos: novos desafios

Livro de Resumos

Sociedade Portuguesa de Química
Divisão de Química Alimentar
Esta publicação reúne os resumos das comunicações apresentadas no 11º Encontro de Química dos Alimentos. Todas as comunicações orais e em painel foram avaliadas pela Comissão Científica do Encontro.
Cytisus multiflorus: source of antioxidant polyphenols

Olivia R. Pereiraa,b, Maria J. Perezc, Rocío I. R. Maciasd, María R.M. Dominguese, Artur M. S. Silvaf, José J. G. Marínd, Susana M. Cardosoa,f*

aCERNAS, ESA, IPC, Portugal, bDTDT, ESSa, IPB, Portugal, cHospital Universitario de Salamanca, IBSAL, Salamanca, España, dHEVEFARM, CIBERehd, Universidad de Salamanca, España, eDepartamento de Química & QOPNA, UA, Aveiro, Portugal, fCIMO, ESA, IPB, Portugal

Cytisus multiflorus, a shrub native from Iberian Peninsula, is consumed as tea infusions due to its beneficial effects. The therapeutic properties of this species, enclosing diuretic, anti-inflammatory, anti-hypertensor and antidiabetic effects, have been associated to the antioxidant properties of its polyphenols [1]. In this sense, this study focuses on the phenolic composition of C. multiflorus, as well as on the evaluation of its antioxidant properties.

The ethanolic extract obtained from flowers of C. multiflorus was mainly rich in chrysin-7-O-β-D-glycopyranoside, as elucidated by HPLC-DAD, ESI-MSa and NMR analyses. This also contained considerable amounts of rutin, a dihydroxyflavone isomer of chrysin, 2”-O-pentosyl-6-C-hexosyl-luteolin, 2”-O-pentosyl-8-C-hexosyl-luteolin and 6”-O-(3-hydroxy-3-methylglutaroyl)-2”-O-pentosyl-C-hexosyl-apigenin [2]. The antioxidant properties of C. multiflorus ethanolic extract were evaluated in both chemical models (DPPH scavenging potential and reducing power) and in human hepatoblastoma HepG2 cell cultures. The non-toxic C. multiflorus extract concentrations were tested for their protective effects against the production of reactive oxygen species (ROS), as induced by potassium dichromate. ROS measurements were also performed with individual polyphenols characteristic of the extract, as well as with a mixture of those phenolics which resembles their levels in the extract.

The extract exhibited high DPPH scavenging activity and reducing power with EC\textsubscript{50} of 13.4±0.6 and 86.1±11.1 μg/mL, respectively. The exposure of HepG2 cells to 50 or 200 μg/mL of the extract resulted in a decreased rate of ROS production in a concentration dependent manner. The mixture of standards that simulate the phenolic composition of the plant afforded a protection of about 50%. From the four standard compounds tested, the most potent was the chrysin.

The results suggest that since chrysin derivatives appears as major components in C. multiflorus ethanolic extract, this is the phenolic most involved in the antioxidant properties of the plant.

Acknowledgements:
The authors acknowledge the financial support provided by the FCT to CERNAS (project PEst-OE/AGR/UI0681/2011) and as well as FSE to QOPNA (project PEst-C/QUI/UI0062/2011), REDE/1504/REM/2005 and the RNRMN. O.R Pereira was supported by a PhD grant (SFRH/PROTEC/49600/2009).

References: