7TH INTERNATIONAL CONFERENCE
ON
SIMULATION AND MODELLING
IN THE
FOOD AND BIO-INDUSTRY
2012

FOODSIM'2012

EDITED BY
Horst-Christian Langowski
and
Sven Franke

JUNE 18-20, 2012
FREISING, GERMANY

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium
Effect of Electron Beam Irradiation Doses in Antioxidant Activity and Phenolics Content of Portuguese Chestnuts
Márcio Carocho, Lillian Barros, Albino Bento, Isabel C.F.R. Ferreira, Amilcar L. Antonio and Iwona Kaluska

Compartment Modelling in Drying of Gamma Irradiated Chestnut Fruits
Amilcar L. Antonio, Elsa Ramalhosa, Albino Bento, Mauro Trindade, Guillermo Sanchez, M. Luisa Botelho, Begofia Quintana

FOOD CONTAMINATION AND SAFETY MEASURES

AFM1 Exposure in the French Population via Milk Products Consumption using Monte Carlo Simulation
Nathalie Wesolek and Alain-Claude Roudot

Software Tool for Assessment of Food Contamination and Food Bans Regulations
Petr Pecha, Radek Hofman and Emilie Pechova

Combined Effects of γ-irradiation and Storage Times on Sugars Composition of Lactarius deliciosus: Comparison through Linear Discriminant Analysis
Ángela Fernandes, João C.M. Barreira, Anabela Martins, Isabel C.F.R. Ferreira, M. Beatriz P.P. Oliveira and Amilcar L. Antonio

A Meta-Analytical Assessment of the Variability between Abattoirs in the Effect of Chilling on the Salmonella incidence on Pig Carcasses
Ursula Gonzales-Barron, James Sheridan, Francis Butler and Vasco Cadavez

FOOD PACKAGING

Modelling and Numerical Simulation of Water Vapour Sorption Kinetics in Humidity regulating Polypropylene Films containing Sodium Chloride
Solange Sanahuja, Oliver Miesbauer, Ellen Reichmann and Sven Sängerlaub

Permeation through Passive and Active Barrier Materials – A Continuum Theoretical Approach
Oliver Miesbauer
EFFECT OF ELECTRON BEAM IRRADIATION DOSES IN ANTIOXIDANT ACTIVITY AND PHENOLICS CONTENT OF PORTUGUESE CHESTNUTS

Mário Carocho1
Lillian Barros1
Aldino Bento1
Isabel C.F.R. Ferreira1
1CIMO-ESA - Instituto Politécnico de Bragança, Portugal; Email: l.barros@ipb.pt
Amilear L. Antonio1,2,3
2GTRPP/Unidade de Física e Aceleradores, ITN, Sacavém, Portugal.
3Departamento de Física Fundamental, Universidad de Salamanca, Spain
Iwona Kaluska4
4Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Warsaw, Poland

KEYWORDS
Irradiated chestnuts, Electron beam irradiation, Antioxidant activity, Phenolics

ABSTRACT

The objective of this study was to analyse the effect of electron beam irradiation (0.5, 1 and 3 kGy) on the antioxidant activity of Portuguese chestnuts (Castanea sativa Mill.) using different in vitro assays, such as the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power, inhibition of ß-carotene bleaching and inhibition of lipid peroxidation using thiobarbituric acid reactive species (TBARS). Total phenolics were determined by spectrophotometric assays. Irradiated samples seemed to preserve phenolics content and revealed higher antioxidant activity than the control sample. The most indicated dose to maintain antioxidants content, and to increase reducing power and lipid peroxidation inhibition was 1 kGy.

INTRODUCTION

Sweet chestnut (Castanea sativa Mill.) woodland covers more than 2.5 million hectares in Europe, with a distribution area ranging from the Southern Mediterranean to Central, Atlantic and Eastern Europe (Díaz-Varela et al. 2011). Portugal is one of the most important chestnut producers with nearly 25% of European production. Trás-os-Montes region represents 75.8% of Portuguese chestnut crops and 84.9% of chestnut orchards area (23,338 ha). The best development conditions are found at altitudes higher than 500 m and winter low temperatures, as in the “Terra Fria Transmontana” region (Northeast of Portugal) in which 12,500 ha are used for chestnut cultivation. Due to the high economic value of chestnuts, it is important to develop conservation methodologies that allow the complete maintenance of their properties and also to fulfill the food sanitary international regulations for exported products. The previously applied methods included mainly low temperature, controlled atmosphere storage and fumigation with methyl bromide (MeBr) for insect disinfestation. Methyl bromide was the most widely used fumigant for chestnuts post-harvest disinfestation, but induces the depletion of the ozone layer and has deleterious effects on health, so it was banned after the Montreal Protocol. In the European Union its use is forbidden since March 2010. Other conservation techniques such as hot water dip, still represent low efficiency, affect chemical composition and may induce mould growth. Irradiation may represent a breakthrough on this issue, since it has been used with promising results (Antonio et al. 2011; Fernandes et al. 2011; Kwon et al. 2004). As far as we know, electron beam irradiation was only tried on chestnuts once, aiming to kill larvae (Todoriki et al. 2006). Electron beam radiation might be a clean, environment friendly, comparatively cheap procedure and an effective phytosanitary treatment. Nevertheless, it must be studied in detail since results may vary with fruit species, exposure time and beam intensity.

Chestnuts are important sources of polyphenolic antioxidants that have high free radical scavenging properties being associated to protective effects against coronary heart disease, cancer, neurodegenerative diseases and osteoporosis. Our research group has already determined the antioxidant properties of non-irradiated Castanea sativa Mill. (Barreira et al. 2008) and in samples exposed to gamma-radiation (Antonio et al. 2011). Herein, we describe the influence of the electron beam irradiation process (at three different doses 0.5, 1 and 3 kGy) in antioxidant properties (radical-scavenging activity, reducing power, inhibition of ß-carotene bleaching and inhibition of lipid peroxidation using thiobarbituric acid reactive species) and phenolics content of chestnuts immediately after irradiation.

MATERIALS AND METHODS

Samples and samples irradiation

Chestnuts samples (Castanea sativa Mill., Judia variety) were obtained directly from a local producer of Trás-os-Montes, Northeast of Portugal. They were divided in four groups to be exposed to different radiation doses (0, 0.5, 1 and 3 kGy) with 27 units per group (about 0.5 kg) placed into polyethylene plastic bags, being 0 kGy the non-irradiated, control samples. To estimate the dose during the irradiation process three types of dosimeters were used. A standard dosimeter, a graphite calorimeter, and two routine Gammachrome YR and Amber Perspex dosimeters, from Harwell company (U.K.). After irradiation, 3 fruits from each group were separated from the skins and lyophilized (Labconco, FreeZone, Missouri, USA), reduced to a fine dried powder (20 mesh), and mixed to obtain a homogenate sample and analyzed.
Antioxidant activity assays

The sample (1.0 g) was extracted twice with methanol (30 mL) for 1 h. After filtration and evaporation of the methanol, the extracts were re-dissolved in methanol at a concentration of 50 mg/mL and analysed for phenolics and flavonoids content, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging activity, reducing power inhibition of β-carotene bleaching and inhibition of lipid peroxidation using thiobarbituric acid reactive species.

Determination of antioxidants content

For phenolics, an aliquot of the extract solution (0.5 mL) was mixed with Folin–Ciocalteu reagent (5 mL, previously diluted with water 1:10 v/v) and sodium carbonate (75 g/L, 4 mL). The tubes were vortexed for 15 s and allowed to stand for 30 min at 40 °C for colour development. Absorbance was then measured at 765 nm (AnalytikJena 200 spectrophotometer). Gallic acid was used to calculate the standard curve (9.4×10⁻¹⁵–1.5×10⁻¹⁵ mg/mL), and the results were expressed as mg of gallic acid equivalents (GAE) per g of extract.

DPPH radical scavenging activity

This methodology was performed using an ELX800 Microplate Reader (Bio-Tek Instruments, Inc.). The reaction mixture in each one of the 96-wells consisted of one of the different concentrations of the extracts (30 μL) and aqueous methanolic solution (80:20 v/v, 270 μL) containing DPPH radicals (6×10⁻⁵ mol/L). The mixture was left to stand for 30 min in the dark. The reduction of the DPPH radical was determined by measuring the absorption at 515 nm. The radical-scavenging activity (RSA) was calculated as a percentage of DPPH discoloration using the equation: % RSA = [(A_{DPPH}-A_3)/A_{DPPH}] x 100, where A_3 is the absorbance of the solution when the sample extract has been added at a particular level and A_{DPPH} is the absorbance of the DPPH solution.

Reducing power

The different concentrations of the extracts (0.5 mL) were mixed with sodium phosphate buffer (200 mmol/L, pH 6.6, 0.5 mL) and potassium ferricyanide (1% w/v, 0.5 mL). The mixture was incubated at 50 °C for 20 min, and trichloroacetic acid (10% w/v, 0.5 mL) was added. The mixture (0.8 mL) was poured in the 48 wells, as also deionised water (0.8 mL) and ferric chloride (0.1% w/v, 0.16 mL), and the absorbance was measured at 690 nm in the Microplate Reader described above.

Inhibition of β-carotene bleaching

A solution of β-carotene was prepared by dissolving this compound (2 mg) in chloroform (10 mL). Two mL of this solution were pipetted into a round bottom flask. After the chloroform was removed at 40 °C under vacuum, linoleic acid (40 mg), Tween 80 emulsifier (400 mg), and distilled water (100 mL) were added to the flask with vigorous shaking. Aliquots (4.8 mL) of this emulsion were transferred into different test tubes containing different concentrations of the extracts (0.2 mL). The tubes were shaken and incubated at 50 °C in a water bath. As soon as the emulsion was added to each tube, the zero time absorbance was measured at 470 nm. β-carotene bleaching inhibition was calculated using the following equation: (Absorbance after 2 h of assay/Initial Absorbance) x 100.

Inhibition of lipid peroxidation using thiobarbituric acid reactive species

Porcine (Sus scrofa) brains were obtained from officially slaughtered animals, dissected, and homogenized with a Polytron in ice cold Tris–HCl buffer (20 mM, pH 7.4) to produce a 1:2 (w/v) brain tissue homogenate which was centrifuged at 3000 g for 10 min. An aliquot (0.1 mL) of the supernatant was incubated with the different concentrations of the sample solutions (0.2 mL) in the presence of FeSO₄ (10 mM; 0.1 mL) and ascorbic acid (0.1 mM; 0.1 mL) at 37 °C for 1 h. The reaction was stopped by the addition of trichloroacetic acid (28%, w/v, 0.5 mL), followed by thiobarbituric acid (TBA, 2%, w/v, 0.38 mL), and the mixture was then heated at 80 °C for 20 min. After centrifugation at 3000g for 10 min to remove the precipitated protein, the colour intensity of the malondialdehyde (MDA)–TBA complex in the supernatant was measured by its absorbance at 532 nm. The inhibition ratio (%) was calculated using the following formula: inhibition ratio (%) = [(A - B)/A] x 100%, where A and B were the absorbance of the control and the sample solution, respectively.

Statistical analysis

Three replicates of each sample were used and all the assays were carried out in triplicate. The results are expressed as mean values and standard deviation (SD). The results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s HSD Test with α = 0.05. This analysis was carried out using SPSS v. 18.0 program.

RESULTS AND DISCUSSION

Irradiated samples seemed to preserve phenolics since these samples present higher concentrations of the mentioned compounds than the control sample (non-irradiated) (Table 1). Moreover, all the irradiated samples (0.5, 1 and 3 kGy) revealed higher antioxidant activity (lower EC₅₀ values) than control sample in all the assayed methods. The most indicated dose to maintain antioxidants content, and to increase reducing power and lipid peroxidation inhibition was 1 kGy. It was possible to correlate DPPH scavenging activity and reducing power with phenolics content ($R^2=0.5607$ and 0.9138, respectively). Nevertheless, these antioxidants are not correlated with the results obtained using lipid peroxidation inhibition assays (β-carotene bleaching inhibition and TBARS assays, Table 2, $R^2 < 0.45$). This could be due to the lipidic environment in which these methods take place. Therefore, other
antioxidants rather than phenolics are certainly responsible for the antioxidant activity observed.

Table 1. Antioxidant activity (EC50 values*) and phenolics content in irradiated and non-irradiated chestnuts.

<table>
<thead>
<tr>
<th>Phenolics (mg GAE/g extract)</th>
<th>EC 0.5</th>
<th>E 1</th>
<th>E 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids (mg CE/g extract)</td>
<td>3.61±</td>
<td>8.16±</td>
<td>5.60±</td>
</tr>
<tr>
<td>0.57±</td>
<td>0.34±</td>
<td>0.50±</td>
<td></td>
</tr>
<tr>
<td>DPPH scavenging activity (mg/ml)</td>
<td>2.34±</td>
<td>0.25±</td>
<td>0.24±</td>
</tr>
<tr>
<td>0.40±</td>
<td>0.05±</td>
<td>0.06±</td>
<td></td>
</tr>
<tr>
<td>Reducing power (mg/ml)</td>
<td>7.05±</td>
<td>0.96±</td>
<td>5.36±</td>
</tr>
<tr>
<td>6.31±</td>
<td>0.59±</td>
<td>0.27±</td>
<td></td>
</tr>
<tr>
<td>β-carotene bleaching inhibition (mg/ml)</td>
<td>6.00±</td>
<td>0.43±</td>
<td>6.95±</td>
</tr>
<tr>
<td>2.54±</td>
<td>0.37±</td>
<td>1.09±</td>
<td></td>
</tr>
<tr>
<td>TBARS inhibition (mg/ml)</td>
<td>10.63±</td>
<td>1.72±</td>
<td>7.82±</td>
</tr>
<tr>
<td>1.26±</td>
<td>0.41±</td>
<td>2.77±</td>
<td></td>
</tr>
</tbody>
</table>

*EC50: Extract concentration corresponding to 50% of antioxidant activity (for DPPH, β-carotene linoleate and TBARS assays) or 0.5 of absorbance (for reducing power assay).

Table 2. Correlations established between phenolics and antioxidant activity EC50 values of irradiated and non-irradiated chestnuts.

<table>
<thead>
<tr>
<th>EC50 value (mg/ml)</th>
<th>Phenolics (mg GAE/g)</th>
<th>Flavonoids (mg CE/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPH scavenging activity</td>
<td>Linear equation Y= 0.2793X+10.811</td>
<td>Y=0.1151X+0.429</td>
</tr>
<tr>
<td>Reducing power</td>
<td>Linear equation Y= 1.0581X+11.051</td>
<td>Y=0.2956X-0.7705</td>
</tr>
<tr>
<td>β-carotene bleaching inhibition</td>
<td>Linear equation Y= 0.3511X+6.8859</td>
<td>Y=0.1494X+0.169</td>
</tr>
<tr>
<td>TBARS inhibition</td>
<td>Linear equation Y= 0.2988X+7.1625</td>
<td>Y=0.154x+0.1106</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Overall, irradiated samples seemed to preserve phenolics content and revealed higher antioxidant activity (lower EC50 values) than the control sample. The most indicated dose to maintain antioxidants content, and to increase reducing power and lipid peroxidation inhibition was 1 kGy.

ACKNOWLEDGEMENTS

REFERENCES

AUTHOR BIOGRAPHIES

MÁRCIO CAROCHO research interests are in chestnuts irradiation. E-mail: mcarocho@gmail.com

AMILCAR L. ANTONIO research interests are related to food irradiation. E-mail: amilcar@ipb.pt

LILIAN BARROS research interests are related to food chemistry. E-mail: lillian@ipb.pt

ALBINO BENTO research interests are related to pest control. E-mail: bento@ipb.pt

IWONA KALUSKA research interests are related to food and medical devices irradiation; dosimetry. E-mail: i.kaluska@ich.tuwaw.pl

ISABEL C.F.R. FERREIRA research interests are related to food chemistry. E-mail: iferreira@ipb.pt