INTRODUCTION

Some mushrooms are a powerful source of bioactive compounds. Indeed, many pre-clinical studies have been conducted in human tumour cell lines and in some cases a number of compounds extracted from mushrooms have entered clinical trials [1]. Our previous results showed that phenolic (methanolic and ethanolic) and polysaccharic extracts from *Clitocybe alexandri* inhibited the growth of four human cell lines (lung, breast, colon and gastric cancer) (Table 1) [2].

The aim of the present work was to:

i) further elucidate the mechanism of action of the extracts that leads to the observed cell growth inhibition, by analysing the cell cycle profile of the NCI-H460 cells treated with each extract

ii) identify and quantify the chemical compounds present in the phenolic and polysaccharic extracts.

MATERIAL AND METHODS

Samples of *Clitocybe alexandri* (Gillet) Konrad (Tricholomataceae) were collected in Bragança (Northeast Portugal), in Autumn 2008, lyophilised and reduced to a fine dried powder. Methanolic, ethanolic and boiling water extracts were obtained.

The effect of the extracts on tumour cell growth inhibition was verified with the SRB assay and the GI50 of each extract was determined for each of the cell lines studied (NCI-H460, MCF-7, AGS and HCT-15) (Table 1) [2]. NCI-H460 cells were treated with the GI50 or twice the GI50 concentration of the three extracts and changes to the normal cell cycle distribution were analysed by flow cytometry.

The chemical compounds present in the phenolic or polysaccharic extracts were identified and quantified by different approaches: the phenolic compounds (in the phenolic extracts) by HPLC-DAD and the monosaccharides and oligosaccharides (in the polysaccharic extracts) by HPLC-RI.

RESULTS AND DISCUSSION

The phenolic (methanolic and ethanolic) and polysaccharic extracts from *Clitocybe alexandri* showed influence on the cell cycle distribution of the NCH-H460 cells. The reason for using both these concentrations (GI50 or twice the GI50) was to increase the possibility of detecting the effect on the cell cycle, given the fact that the GI50 was determined with an assay that detects alterations in protein content, not in cellular viability. All the extracts induced an S phase cell cycle arrest, particularly evident at the highest concentration tested.

Figure 1. Cell cycle analysis of NCH-H460 cells treated for 48 h with phenolic (ethanolic - A and methanolic - B) and polysaccharic (C) extracts from *Clitocybe alexandri* at their GI50 or 2 x GI50 concentrations. Untreated cells were as the control and a solvent control was also included (DMSO). Results are the mean ± SD of three independent experiments performed in duplicate.

The main compounds isolated from the phenolic extract were protocatechuic acid (16.42 ± 2.5 mg/Kg, dw), p-hydroxybenzoic acid (8.34 ± 0.40 mg/Kg) and cinnamic acid (6.38 ± 0.29 mg/Kg). Regarding the polysaccharic extract the main compounds isolated and identified were manitol (monosaccharide derivative) and trehalose (disaccharide).

Figure 2. Individual sugar chromatogram of *Clitocybe alexandri*. 1: Manitol; 2: Trehalose.

In an attempt to identify the compounds responsible for the cell growth inhibitory activity of this mushroom, the activity of the purified compounds was assessed using the SRB assay. None of the so far isolated and identified compounds presented GI50 values bellow 150 µM (data not shown), which suggests that there may be other, not yet identified, compounds in the extracts or that a combination of the compounds is responsible for the biological activity found in the extracts.

ACKNOWLEDGEMENTS

FCT (COMPETE/QUEN/UE, PTDC/AGR-ALI/110062/2009 research project) and BD/43653/2008 grant to J.A. Vaz for financial support. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT. G.M. is supported by FCT, Portugal, and the European Social Fund.