Main Quantitative and Qualitative Indexes for the Carcass of Half-bred F1 (Texel x Merinos) and (Ile de France x Merinos) Fattened Intensively

J. Tafta* and L. Murat. University of Agricultural and Veterinary Sciences, Bd. Marasti 59, Bucharest, Romania

The present work presents the results of a study performed on 60 heads of young sheep, out of which 20 have been of F1 (Texel x Merinos of Palas), 20 of F1 (Ile de France x Merinos of Palas) and the remaining 20 heads have been of Romanian Merinos of Palas.

All the lambs have been weaned when were of 60 days and underwent an intensive fattening programme of 100 days with 500 g of alfalfa hay, 500 g maize, 250 g grinned barley, 200 g sunflower groats, 20 g calcium and 10 g salt.

The recorded indexes (weight gain, consumption per kilo gain, yield at slaughtering, proportions of commercial regions, muscle fibres diameters for longissimus dorsi, the chemical composition) have been higher for the half-breeds than for the Romanian Merinos. The first position was occupied by Texel x Merinos half-breed, with a weight gain of 251.94 ± 9.48 g/day, at a consumption rate of 5.20 Nutritious Units/kg gain and 670 Digested Raw Protein (D. R. P.), having a commercial yield of 56.03%, a proportion of 68.67% meat, 8.23% fat, 23.10% bones and 31.20 microns muscle fibre diameter.

It was, thus, concluded that by cross-breeding with the races Texel and Ile de France the assimilation capacity of the Romanian Merinos of Palas is much improved.

The use of ultrasonic measurements assessed with two probes in live lambs for prediction the carcass composition.

A. Teixeira 1* and R. Delfa 2. 1 Instituto Politécnico de Bragança, Apdo. 172, 5300 Bragança - Portugal. 2SIA-DGA, Apdo. 727, 50080 Zaragoza España.

The accuracy of the use of two probes (UST-586-5 MHz and UST-556tu-7.5 MHz) for predicting the carcass composition were used in 36 lambs of Churra Bragançana breed ranging in body weight from 26 to 47kg. Comparison between the ultrasonic measurements assessed in live lambs with the same measurements taken on carcass were established. The best relationship obtained were between the ultrasonic measurements assessed with 7.5 MHz probe on last rib and the same fat thickness measurements taken on carcass. Between 41 and 86% of the variation in the weight of carcass components were accounted for by variation in body weight and the ultrasonic measurements. The 94% of variation in muscle weight was accounted for by variation in body weight. The 50% of variation in intermuscular fat weight was accounted for by variation in body weight and the inclusion of the ultrasonic measurement of fat thickness assessed on last rib in a multiple regression accounted for a further 20% of the variation. The 84% of the variation of bone weight was accounted for by variation in body weight and the ultrasonic measurement of fat thickness taken on last rib. The residual standard deviation (RSD) values for the regression equations indicate that ultrasonic measurements assessed with the UST-556tu-7.5 MHz probe in addition of body weight could be acceptable predictors of some carcass components and body fat depots.