workshop
Antiparasitic and Antitumour drugs

ABSTRACT BOOK
New Indigo Workshop: Antiparasitic and Antitumour drugs | 8 and 9 of September 2011 | 1's - Porto, Portugal

Scientific Committee:
Anabela Cordeiro, FFUP and IBMC, Portugal
M Helena Vasconcelos, FFUP and IPATIMUP, Portugal
M São José Nascimento, FFUP and CEQUIMED-UP, Portugal
Ali Ouaissi, INSERM, Montpellier, France
Nilanjan Roy, National of Pharmaceutical Education and Research, India

Organizing Committee:
Anabela Cordeiro, FFUP and IBMC, Portugal
M Helena Vasconcelos, FFUP and IPATIMUP, Portugal
Sofia Costa Lima, IBMC
Hugo Seca, IPATIMUP and FFUP
Sponsors:
VWR
Citomed - R&D SYSTEM Prize

Funding:
ERA-NET New Indigo

Secretariat:
IBMC.INEB – Events Management Office
P2. Bioactivity and chemical characterization of *Fistulina hepatica* extracts

Josiana A. Vaz¹,²,³,⁴, Catarina Tavares², Gabriela M. Almeida², Anabela Martins¹, M. Helena Vasconcelos²,³, Isabel C.F.R. Ferreira¹

¹CEIMH- Instituto Politécnico de Bragança Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal; ²Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; ³CEQUIMED-UP - Center of Medicinal Chemistry- University of Porto, Portugal; ⁴Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal

Fistulina hepatica, the beefsteak fungus, belongs to the order Agaricales and is commonly found all over Europe, North America, Australia and North Africa. Being a good edible species, it has also been investigated for its medicinal and pharmaceutical capacities. The anti-tumor activity of *F. hepatica* polysaccharides extracts from the mycelial culture was reported after intraperitoneal administration into white mice [1].

Nevertheless, nothing has been reported with phenolic and polysaccharidic extracts from the fruiting body. The aim of this work was to evaluate the antioxidant activity and tumour cell growth inhibitory potential of those extracts, and to further characterize their chemical composition. Phenolic (methanolic and ethanolic) and polissacharidic (boiling water) extracts were prepared and their antioxidant properties were evaluated through its reducing power (RP), radical scavenging activity (RSA) and lipid peroxidation inhibition capacity by the β-carotene-linoleate system (CLS). The tumour cell growth inhibitory potential was studied with the sulforodamine B (SRB) assay in the MCF-7 (breast) and in the HCT-15 (colon) cell lines.

Chemical characterization was possible by chromatographic analyses: HPLC-DAD for phenolic compounds and HPLC-RI for sugars. Results showed that the polysaccharidic extract was the most effective as antioxidant with the following EC50 values: RP (2.60 ± 0.06 mg/ml), RSA (2.71 ± 0.23 mg/ml) and CLS (0.84 ± 0.01 mg/ml). The main sugars present were arabinose (7.76 ± 0.63 g/100 g dw), trehalose (2.95 ± 0.22 g/100 g) and mannitol (2.12 ± 0.22 g/100 g). Among the phenolic extracts, the methanolic one was more active with EC50 values ≤ 5.32 mg/ml. The main phenolic acids present in the extract were: protocatechuic (6.76 ± 0.17 mg/100 g dw), p-hydroxybenzoic (4.19 ± 0.90 mg/100 g) and cinnamic (0.22 ± 0.01 mg/100 g) acids. Results from the tumour cell growth inhibitory activity revealed that these extracts are not strong inhibitors of tumour cell growth since the GI50 concentration was not achieved with the maximum concentration tested (400 μg/ml).
Despite the good antioxidant properties found in the extracts from the fruiting body, they did not show growth inhibitory activity in the tested cell lines. Therefore, it would be important to test the activity in other cell lines and to produce mycelium in order to evaluate its bioactivity.

P3. Paromomycin nanoformulations with improved antileishmanial properties

M.M. Gaspar¹, H. Castro², J. Pereira¹, C.V. Eleutério¹, A.M. Tomás², M.E.M. Cruz¹

¹Nanomedicines & Drug Delivery Systems, i-Med, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Portugal
²Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto

The lack of effective drugs for treatment of leishmaniasis constitutes a major threat for millions of people worldwide. As there are no novel compounds expected to be approved in a short term, efforts should be made to improve the efficacy of currently available drugs. One of these strategies may be the use of drug delivery systems, such as liposomes. These lipid systems are able to optimize the therapeutic performance of existing antileishmanial compounds, through a preferential intracellular accumulation of drugs in macrophage-rich organs such as liver and spleen where parasites proliferate. This strategy can result in shorter treatments, lower administered doses, reduction on side-effects and emergence of drug resistance.

Paromomycin (PRM) is an aminoglycoside with proved antileishmanial activity since 1960s. This antibiotic is poorly absorbed into systemic circulation after oral administration and it is absorbed rapidly from intramuscular sites of injection. In a clinical trial conducted in India this antibiotic has shown to be efficacious against visceral leishmaniasis. However, its efficacy is far from ideal as last clinical trials were controversial and irregular: a 94% of cure was registered in some trials whereas a failure was observed in others.

Our strategy was the encapsulation of PRM in liposomes in order to improve its therapeutic performance. Systematic studies concerning selection of best liposomal formulations able to maximize the loading.