Drug resistance in cancer: from biology to molecular targets and drugs

Rui MV Abreu¹, Maria- João RP Queiroz², Isabel CFR Ferreira³, Ricardo C Calheira⁴, Filomena Adegai and Raquel Chaves⁴

¹ CIMO-ESAL, Instituto Politécnico de Bragança, Campus de Sta Apolónia, Bragança, Portugal
² Instituto de Biociências e Bioengenharia, Centro de Genómica e Biociências, Universidade de Trás-os-Montes e Alto Douro
³ CBG-ITAD/BB, Vila Real, Portugal
⁴ Centro de Química, Escola de Ciências, Universidade do Minho, Campus de Guimarães, Braga, Portugal
mjrpq@quimica.uminho.pt

Hepatocellular carcinoma (HCC) is a major health problem with more than 660,000 new cases per year worldwide [1]. HCC is resistant to commonly used treatments like chemotherapy and radiotherapy and new anti-HCC therapies are urgently needed. Sorafenib was the first approved small molecule against HCC and underlines the importance of identifying potential new anti-HCC drugs [2]. Thirty-two 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylates, previously prepared by some of us [3, 4], were evaluated as potential new anti-HCC agents by studying their in vitro cell growth inhibition on human HepG2 cells, generally regarded as a good HCC model, and hepatotoxicity using a porcine liver primary cell culture (PLP1). The presence of amino groups linked to a benzene moiety on the substitution of the 6-position emerged as the key element for the anti-HCC activity. The methyl 3-amino-6-[{3-aminophenyl)ethynyl]thieno[3,2-b]pyridine-2-carboxylate was the most potent compound presenting HepG2 GI50 = 1.2 µM against 2.9 µM of the positive control ellipticine, with no observed hepatotoxicity (PLP1 GI50 = 125 µM against 3.3 µM of ellipiticine). QSAR studies were also performed to provide mechanistic insights for the anti-HCC activity and hepatotoxicity of the compounds. The correlations obtained using molecular and 1D descriptors revealed the importance of the presence of amino groups and other hydrogen bond donors for anti-HCC activity, and hydrogen bond acceptors for hepatotoxicity. The best correlations were obtained with 3D descriptors belonging to different subcategories for anti-HCC activity and hepatotoxicity, respectively. These results point to different molecular mechanisms of action of the compounds for anti-HCC activity and hepatotoxicity. This work presents some promising 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylates for potential use in chemotherapy against HCC. Moreover these compounds may also be used as scaffolds for further synthesis of more potent and less toxic analogues.


Acknowledgments: FCT (Portugal) and COMPETE/QREN for financial support through the research project PTDC/QUI/QUI/6809/2009. R. MV. Abreu and R. C. Calheira thank FCT, POCTI/ QREN and FSE for their grants: SFRH/PROTECO/34498/2008 and SFRH/BPD/53444/2010, respectively.