01271
Embedding a Competitive Ranking Method in the Artificial Fish Swarm Algorithm for Global Optimization

Ana Rocha, ana.rocha@dps.uninho.pt
Production and Systems Dept., University of Minho, Portugal

Edite Fernandes, emgpf@dps.uninho.pt
University of Minho, Portugal

Nonlinear programming problems are known to be difficult to solve, especially those involving a multi-modal objective function and/or convex and at the same time disjoint solution space. Heuristic methods do not require derivative calculations have been used to solve this type of constrained problems. The most used constraint-handling technique has been the penalty method. This method converts the constrained optimization problem to a sequence of unconstrained problems by adding, to the objective function, terms that penalize constraint violation. The selection of the appropriate penalty parameter value is the main difficulty with this type of method. To address this issue, we use a global competitive ranking method. This method is embedded in a stochastic population based technique known as the artificial fish swarm (AFS) algorithm. The AFS search for better points is mainly based on four simulated movements: chasing, swarming, searching, and random. For each point, the movement that gives the best position is chosen. To assess the quality of each point in the population, the competitive ranking method is used to rank the points with respect to the objective function and constraint violation independently. When points have equal constraint violations then the objective function values are used to define their relative fitness. The AFS algorithm also relies on a very simple and random local search to refine the search towards the global optimal solution in the solution space. A benchmarking set of global optimization problems is used to assess this AFS algorithm performance.

01280
Comparative Study of Penalty Simulated Annealing Methods for Multi-local Programming

Ana Pereira, apereira@fct.unl.pt
Instituto Politécnico de Bragança, Portugal

Edite Fernandes, emgpf@dps.uninho.pt
University of Minho, Portugal

In a multi-global optimization problem we aim to find all the global solutions of a constrained nonlinear programming problem where the objective function is multimodal. This class of global optimization problems is very important and frequently encountered in engineering applications, such as, process synthesis, design and control in chemical engineering. The most common method for solving this type of problems uses a local search method to refine a set of approximations, which are obtained by comparing objective function values at points of a predefined mesh. This type of method can be very expensive numerically. On the other hand, the success of local search methods depends on the starting point being at the neighbourhood of a solution. Stochastic methods are appropriate alternatives to find global solutions, in which convergence to a global solution can be guaranteed, with probability one. This is the case of the simulated annealing (SA) method. To compute the multiple solutions, a function stretching technique that transforms the objective function at each step is herein combined with SA to be able to force, step by step, convergence to each one of the required global solutions. The constraints of the problem are dealt with a penalty technique. This technique transforms the constrained problem into a sequence of unconstrained problems by penalizing the objective function when constraints are violated. Numerical experiments are shown with three penalty functions. This is a joint work with Edite M.G.P. Fernandes.

01282
The Influence of Control Parameter Costs in a Dynamic Epidemic Model

Helena Sofia Rodrigues, sofari@esfe.ist.utl.pt
Viana do Castelo Polytechnic Institute (IPVC), Portugal

M. Teresa T. Monteiro, mteresa@dps.uninho.pt
Systems and Production Department, University of Minho, Portugal

Delfim F. M. Torres, defm@dps.uninho.pt
University of Aveiro, Portugal

Dengue is a disease predominantly found in tropical and sub-tropical climates, mostly in urban and semi-urban areas. According to the World Health Organization, the incidence of dengue has drastically grown in recent decades and about two thirds of the world’s population are now at risk. Humans are contaminated through mosquitoes, mainly by the aedes aegypti, but only the female mosquitoes acquire dengue from an infected human. People not only provide the mosquitoes with blood meals but also nutrients needed to reproduce through water-holding containers in and around the home. The dynamic model presents a set of nonlinear ordinary differential equations and an objective function in order to minimize government investment in fighting the disease. Total investment consists in costs to break the reproduction cycle of the mosquitoes, such as the application of insecticide, in the educational campaigns and also in costs related with human health issues. The goal of this paper is to use optimal control approach to evaluate the effectiveness of the controls. Tuning the parameters of associated costs, different results are reported. Depending on relative weight of the controls, numerical results show that different strategies to fight the disease could be used. Consequently, it is shown that government investment is influenced by the manipulation of these parameters. A numerical package for dynamic optimization with real data taken from the recent outbreak of dengue disease in Cape Verde in 2009 was used.

01357
Muscle Control Model for Postural Stability Based on State-Dependent Riccati Equation

Rejane Pergher, pergher@futs.br
Universidade de Caxias do Sul, Brazil

Valdeci Botttega, vbotttega@futs.br
Universidade de Caxias do Sul, Brazil

Alexandre Molten, alexandre.molten@yahoo.com.br
Universidade Federal de Pelotas, Brazil

The biomechanical model of a human musculoskeletal system and the simulation of behavior in movement can be applied in several areas, such as sports, engineering and medicine. The purpose of this work is to obtain a dynamic and control model that represents a musculoskeletal system of a human posture. The description of kinematic and dynamic links movements is based on Newton-Euler and Euler-Lagrange formulations. The resulting movements are produced by sets of force actuators muscle-tendinous.