In vitro Blood Flow in Circular PDMS Microchannels: Effect of the Flow Rate and Hematocrit

Vlademar AUGUSTO 1; Ricardo DIAS 1,2; Teresa CORREIA 1,2; Rui LIMA 1,2; Elisa PINHEIRO 1; Diana PINHO 1; Pedro RODRIGUES 1

1. ESTIG, Institute Polytechnic Braganca, Braganca, Portugal
2. ESA, Institute Polytechnic Braganca, Braganca, Portugal
3. CEFT, Porto University, Porto, Portugal
4. CIMO, Institute Polytechnic Braganca, Braganca, Portugal

Recently, Lima et al. [1] has performed confocal micro-PIN measurements on the blood flow through straight PDMS microchannel. In that study they have observed that the formation of the cell free layer is enhanced as the cross section ratio increases. However, the cross section ratio is not the only parameter that contributes for the creation of the cell-free layer. Hence, several other physical and hemorheological factors (such as flow rate, hematocrit, viscosity and cell deformability) need to be investigated in order to make use on the physico of microfluidics to either develop new lab-on-chip devices or to optimize the design of the existent microfluidic chips. The main aim of the present study is to show the effect of both flow rate and hematocrit on the blood flow and cell behaviour. The circular polymethylsiloxane (PDMS) microchannels were fabricated by using wire casting technique and the experiments were carried out by using dextran 40 containing different frictions of red blood cells (RBCs). The in vitro blood flow was measured by means of video microscopy and image analysis. Additionally, the pressure drop was also measured.

Drift and Fluctuating Motion of Artificial Platelet during Adhesion Process Near the Wall

Hiroaki TOYOBUSHI 1; Antoine PARAGON 2; Yosuke OKAMURA 3; Shinji TAKEOKA 4; Ryo SUDO 5; Kazuo TANISHITA 6

1. School of Science and Technology; Keio University; Yokohama, Japan
2. School of Science and Engineering; Waseda University; Tokyo; Japan

INTRODUCTION: Development of platelet substitute is necessary to overcome platelet transfusion problems, the limitation of short-term storage and the risk of viral and bacterial infections. To overcome these problems, the development of platelet substitutes is necessary to achieve long-term storage and avoidance of viral infections. An important mechanical aspect of platelet adhesion to vessel wall is a microscopic motion. Especially, a lateral motion of platelet plays a role key of transportation and adhesion to injured vessel wall in hemostasis process. Previous studies reported that the presence of Near Wall Effect (NWE; concentration of platelet near wall region in blood flow) largely contributes to the adhesion of platelet. However, because of short trajectory of the particle, the previous studies based on fixed-point measurement could not reveal the mechanism of lateral transport. To obtain long trajectories including lateral motion, we built a travelling stage of microscopes for tracking particles moving through flow channel and estimated the lateral motion which contributes to NWE and adhesion.

MATERIALS AND METHODS: We employed recombinant Glycoprotein Ib alpha conjugated latex beads (rGPIba-LB) as platelet substitute. These particles were observed at wall shear rate (WSR) of 200, 500, and 1000/s with hematocrit of 0 and 40% of washed red blood cells in rectangular flow channel which had WfW surface. In order to observe long trajectories of the particles, the field of view of the microscope was moved from the entrance to the exit by travelling stage. We tracked the particle as Lagrangian method and separated the trajectory of particle with drift and fluctuating motion, and investigated quantitatively the motion which contributes to NWE and adhesion to the wall surface.

RESULTS AND DISCUSSION: Trajectories of rGPIba-LB were tracked from obtained movies. Then lateral gradient which reflects a drift motion of the particle toward the wall and dispersion coefficient which reflects a fluctuating motion of the particle were calculated. The rGPIba-LB moved only along axial direction with 0% hematocrit. As hematocrit increases, rGPIba-LB moved toward the near wall (about 0.9R) and the position was similar to that of NWE in previous studies. The dispersion coefficient increased near the wall and as WSR and hematocrit increased. Although the lateral gradient showed that rGPIba-LB moved toward the center of the flow channel on the wall, high dispersion coefficient near the wall induced rGPIba-LB to interact with the wall surface. These results showed that fluctuating motion is enhanced with the presence of RBC and high shear, and the particle motion near the wall includes low drift motion and high fluctuating motion.

CONCLUSION: We concluded the particle which has drift motion with fluctuating motion induced by the presence of RBC and high shear contributes to interact to the wall surface and adhesion from NWE region.

Deformation Behavior of Multiple Red Blood Cell in a Capillary Vessel with Bifurcations

Xiaoba GUO 1; Shi TAKAO 2

1. Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai, China
2. Department of Mechanical Engineering, Tokyo University, Tokyo, Japan

The detailed deformation of multiple red blood cells in capillary flows is investigated computationally and hydrodynamics in the capillary flow accompanied with the deformation of red blood cells are analyzed. The membrane of red blood cell is modeled as a hyperelastic thin-shell and the immersed boundary method is used for the fluid-structure coupling in the present simulations. Numerical results show that the apparent viscosity in the capillary flow increases with the increase of the shear coefficient in the membrane of red blood cell, while this change for the viscosity is not obvious when the stiffness of the membrane changes. The distribution of multiple red blood cells in a capillary with branches is also simulated which shows that the apparent viscosity in the flow and the distribution of the cells affect each other interreactively.

Mechanics of Human Red Blood Cell and the Smallest Limiting Geometries it can Flow Through

Ming DAO 1; Igor V. PIVKIN 2; Guillaume DEPLAINES 3; Pierre A. BUFFETT 4; Sutara SURESH 5

1. MIT, Cambridge, MA, United States
2. Singapore-MIT Alliance for Research and Technology (SMART), Singapore
3. Centre Hospitalier Universitaire Pitie-Salpetriere, Paris, France

The exquisite deformability of the human red blood cell (RBC) is essential to its physiological function which requires continuous circulation through narrow capillaries and even narrower splenic slits during about 120 days. Numerous diseases are associated with marked shape and deformability alterations of the RBC. Induced either by mutations of RBC cytoskeleton proteins in inherited disorders such as hereditary spherocytosis, or by the malaria parasite P. falciparum (amongst others), these alterations impair the RBC ability to overcome size-limiting deformability constraints in the human microcirculation. Analytical, continuum-based and molecular-level modeling have been applied to study the relation between RBC shape deformability versus the critical conditions of capillaries and splenic slits (limiting dimensions, geometry, and pressure differentials). These findings have been cross-validated by biological experiments using filters, and ex vivo perfusion of human spleens. This integrative bio-physical approach will be now applied to more precisely explore key determinants of RBC microcirculation in physiology and disease.
The aim of this study is to investigate the relationship between mesh patterns and mechanical properties in the closed-cell stent structure. Multiple types of mesh patterns were designed and the differences of characteristic due to the patterns were studied by deformation analysis using computational analyses based on FEM. We validated numerical model with bending and compressive experiments by fabricated stent sample. The results of this study showed that the bending stiffness of a closed cell model can be changed with its stent structure for all stent models. This behavior is explained considering the different stent cell geometries which set by geometrical parameters. Bending moment of 0.17 Nm at a curvature index of 0.06 rad/mm, which is efficient for cerebrovascular stent.

Therefore, bending stiffness for closed-cell stent depend on the geometry configure of the stent cell. It decreased by the geometry of the stent cell structure and the transversal direction of the stent. Mechanical flexibility equal to open cell structure was obtained in the closed-cell structure by varying geometrical configure of stent cell.

WCB-A00983-01858

Micro-flow Visualization of In vitro Blood through a Microchannel with a Bifurcation and Confluence

Diana CIDRE; Rui LIMA; Carlos FERNANDES; Ricardo DIAS; Takuji ISHIKAWA; Yoshihiko IMAI; Takami YAMAGUCHI

1. ESTIG, Institute Polytechnic Braganca, Braganca, Portugal
2. CFT, Porto University, Porto, Portugal
3. Dept. Bioeng, & Robotics, Tohoku University, Sendai, Japan
4. Dept. Biomedical Eng., Tohoku University, Sendai, Japan

Micro-visualization techniques have been used to investigate the in vitro blood flow through straight glass capillaries. Although the glass microchannels present certain similarities to in vivo microcirculation, it is also clear that these kind of in vitro experiments differ from microvessels in several respects, such as: elasticity of microvessels, endothelial cell surface layer and microvascular networks composed with short irregular vessel segments which are linked by numerous bifurcations and convergences. Thus it was not surprising that several studies on blood flow in glass microtubes and in microvessels have yielded conflicting results with respect to the relationship between viscosity and flow resistance. The main purpose of this work is to improve our understanding about the effect of a bifurcation and convergence on the rheological properties of in vitro blood. The microchannel containing a bifurcation and confluence will be fabricated in PDMS by using a soft lithography technique. The flow behaviour of both pure water (PW) and dextran 40 (D40) containing about 14% (1500000) of human red blood cells (RBCs) will be investigated by means of a confocal micro-PTV system. Additionally, the experimental measurements obtained with PW will be also compared numerically by using the commercial finite element software package POLYFLOW.

WCB-A01012-01765

Blood-on-chips: Flow through Complex Geometries

Rui LIMA; Monica OLIVEIRA; Takuji ISHIKAWA; Noriko MATSUKI; Yoshihiko IMAI; Takami YAMAGUCHI

1. DTM, ESTIG, Institute Polytechnic Braganca, Braganca, Portugal
2. CFT, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
3. Departamento de Engenharia Quimica, CFT, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
4. Dept. Bioeng. & Robotics, Tohoku University, Sendai, Japan
5. Dept. Biomedical Eng., Tohoku University, Sendai, Japan

Blood is a complex body fluid, composed of cells and plasma, which has a massive amount of information about several physiological and pathologic events happening throughout the body. Hence, blood sampling and analysis are used extensively in traditional clinical laboratories for the diagnosis of several diseases. Since the inception of microfluidics, there has been a growing interest in both microfluidic and biomedical communities, to develop blood-on-chip devices as an alternative tool for the diagnosis of major diseases, such as cancer and cardiovascular diseases. Therefore, it is essential to understand the blood flow behaviour involved in this kind of microfluidic channels in order to design reliable blood-on-a-chip devices able to efficiently test and diagnose a variety of diseases. The present experimental study shows the effect of micro-scale contractions and expansions, such as those found in an artificial stenosis, on the blood flow and cell behaviour. The micro-channels were fabricated in PDMS using photolithography and the experiments were carried out by using dextran 40 containing different fractal dimensions and human erythrocytes. The in vitro blood flow was measured by means of a high-speed video microscopy system composed with an inverted microscope, a high-speed camera and a thermo plate to control the surrounding temperature.

WCB-A01081-01853

Inertial Based Spiral Microfluidics for Fractionating Stem Cells into Different Stages of Cell Cycle

Wong Cheong LEE; Ali Asgar BHAGAT; Jongyoon HAN

1. BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
2. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
3. Division of Bioengineering, National University of Singapore, Singapore
4. Department of Electrical Engineering and Computer Science & Biological Engineering, Massachusetts Institute of Technology, Cambridge/MA, United States
5. Research Centre of Excellence in Mechatronics, National University of Singapore, Singapore

We introduce a microfluidics based approach to cell cycle synchronization using inertial forces in spiral microchannels. Cell cycle synchronization is an important technique, for instance in [1, 2], Butler. Am J Physiol Cell Physiol 2001; 281: C69-C84; 2000. This technique can be used in chemical processes and regulatory mechanisms within the cell. Animal cells can be synchronized by inhibiting DNA replication in the s phase using chemicals such as hydroxyurea, methotrexate or aphidicolin (1). Synchronized cultures can also be obtained by non-chemical means which include serum starvation (2) and contact inhibition (3). These techniques have the ability to obtain large numbers of partially synchronized dividing cells but the metabolism of the synchronized cells is often modified, leading to unbalanced growth of cells and disrupted progression through the cell cycle. Counterflow centrifugal elutriation is another commonly used synchronization technique which separates living cells based on cell sizes that correspond to the various stages of cell cycle (4). Unlike chemical and growth limiting methods, centrifugal elutriation does not affect the metabolism of cells. However, the need for large operating equipment setup limited the widespread application of this technique within the biological community. Recently, size-based particle separation in spiral microchannels have been developed based on the principles of inertial migration (5). In spiral shaped microchannel, under Poiseuille flow condition, particles of different sizes equilibrate at distinct positions along the microchannel cross-section under the influence of inertial lift and Dean drag forces. Using this principle, we have size fractionated human mesenchymal stem cells (hMSCs) so that relatively pure populations of G1, S and G2/M phase cells can be obtained. The flow through of this technique is high (typically 1-2mL/min), allowing one to fractionate large (~1-2 x 10^6) number of cells. If optimized, this device could find diverse applications in the biological studies of many different cell types.

REFERENCES:

WCB-A01093-01897

Study of Temperature-Dependent Deformability of Red Blood Cells Using Microfluidic Bottleneck Array

Shu HUANG; Hansen BOW; Monica DIEZ SILVA; Subra SURESH; Jongyoon HAN

1. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge/MA, United States
2. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge/MA, United States
3. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge/MA, United States

Red Blood Cells (RBCs) undergo repeated deformation as they traverse blood capillaries and organs; the deformability of RBCs is therefore crucial for normal blood circulation. The loss of RBC elasticity is central to the pathophysiology of several potentially severe diseases, such as sickle cell anemia and malaria. In the context of malaria, Plasmodium falciparum exports proteins which alter the structure of the spectrin network, and as a consequence, host RBCs stiffen upon infection. Studies show that the deformability of parasitized RBCs is most significantly impaired at febrile temperature (Marina Marinkovic, Monica Diez-Silva, Ivan Pantic, Jeffrey J. Frankel, Subra Suresh, and Jongyoon Han, Am J Physiol Cell Physiol 2006; C59-C64, 2009). This observation suggests that temperature may