for Nickel(II) concentrations in the range of 5-25 mg/L. EC50 values of the isolates were determined by probit analysis. Synechocystis sp. BAS0403 (EC50 of 17.41 mg/L) and Synechocystis sp. BAS0404 (EC50 of 2.56 mg/L) were selected from among the isolates based on their capacity to produce extracellular polysaccharides (EPS) which were >43 mg/L and 44 mg/L, respectively, for bioaccumulation at 15 mg/L Ni(II) concentration. The BAS0404 isolate displayed a higher Ni(II) accumulation (95%) especially on the cell surface than BAS0403 (51%) after a 7-day incubation period. A reverse relationship between EPS capacity and Nickel bioaccumulation (p < 0.01) was indicated, but a positive correlation was observed between EPS capacity and Nickel toxicity (p < 0.01). It is suggested that EPS from two isolates of Synechocystis sp. plays a protective role for Ni(II) toxicity.

doi:10.1016/j.jbiotec.2010.09.083

[P-E.62]

Bioleaching of hexavalent chromium from soils using Acidithiobacillus thiooxidans

Bruna Fonseca*, Joana Rodrigues, Ana Queiroz, Teresa Tavares

Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, University of Minho, Portugal

Keywords: Bioleaching; Hexavalent chromium; Acidithiobacillus thiooxidans; Soils

The continuous and growing degradation of the environment, due to several anthropogenic activities, is a main concern of the scientific community. Consequently, the development of low cost techniques to clean air, water and soils are under intense investigation. In this study, the focused problem is the soil contamination by hexavalent chromium, which is known for its several industrial applications - production of stainless steel, textile dyes, wood preservation and leather tanning - its high toxicity and mobility.

Bioleaching has been presented as a low cost effective technique to decontaminate soils polluted with heavy metals. Sulphur oxidizing bacteria, like Acidithiobacillus thiooxidans, were already applied with this technique as they produce sulphuric acid, lowering the pH and promoting the dissolution of heavy metals. On the other hand, it also known that polythionates, generated during the oxidation process, have high reducing power. Considering this information and since few studies have been made concerning the bioleaching of hexavalent chromium from soils, this work pretended to investigate this matter.

Specifically, eighteen Erlenmeyers flasks (250 mL) with a working volume of 150 mL, containing 10% (v/v) of inoculum (Acidithiobacillus thiooxidans DSM 504), 90% (v/v) of growing medium (DSM 35) and 3% (v/v) of contaminated soil were agitated in a rotary shaker, at 150rpm, for 70 days. Also three controls were undertaken by sterilizing the soil and/or suppressing the inoculum. Two operation temperatures - 26°C and room temperature - and different levels of soil contamination were evaluated within this work. Finally, the composition, richness and structure of soil microbial communities, before and after the contamination/decontamination processes, were assessed through denaturing gradient gel electrophoresis (DGGE), of the amplified 16S rRNA gene fragments of the DNA extracts of the soil samples.

This study presented bioleaching as a competitive technique in soil cleaning, as it is efficient and inexpensive.

doi:10.1016/j.jbiotec.2010.09.084

[P-E.63]

Identification of the third glutathione S-transferase gene involved in the stereospecific cleavage of β-aryl ether in Sphingobium sp. strain SYK-6

K Tanamura1, D Kasai1, M Nakamura2, Y Katayama3, M Fukuda1, E Masai1

1 Nagaoka University of Technology, Japan
2 Forestry and Forest Products Research Institute, Japan
3 Tokyo University of Agriculture and Technology, Japan

Keywords: glutathione S-transferase; lignin; beta-aryl ether; Sphingobium

The degradation of arylglycerol-β-arly ether is the most important process in microbial lignin catabolism. Sphingobium sp. SYK-6 degrades guaiacylglycerol-β-guaiacyl ether (GGE) to (2-methoxyphenox)-β-hydroxypropyranillone (MPHPV), and then the ether linkage of MPHPV is cleaved to generate a-glutathionyl-β-hydroxypropyranillone (GSHPV) and guaiacol. Three alcohol dehydrogenase genes are involved in the degradation of four stereoisomers of GGE. The ligD gene is essential for conversion of (αR,βS)-GGE and (αR,βR)-GGE into (BS)-MPHPV and (BR)-MPHPV, respectively, while ligL and ligN transform (αS,βR)-GGE and (αS,βS)-GGE to (BR)-MPHPV and (BS)-MPHPV, respectively. LigF and LigE, which belong to glutathione S-transferases (GST), catalyze the nucleophile attack of glutathione on Cβ of (BS)-MPHPV and (BR)-MPHPV, respectively. In these processes, LigF is crucial, however, a participation of an alternative GST gene was suggested in the degradation of (BR)-MPHPV. In order to isolate the gene for the (BR)-MPHPV degradation, a cosmid library was screened using a fluorescent assay substrate for the cleavage of β-aryl ether. A positive clone, pAD12, which did not contain either ligF or ligE, was isolated. The 4.6-kb BamHI fragment of pAD12 conferred the ability to convert only (BR)-MPHPV on E. coli, indicating that the gene included in this fragment encodes (BR)-MPHPV-specific GST. The nucleotide sequence of the fragment revealed an open reading frame of 843 bp (ligE2). The deduced amino acid sequence of ligE2 showed 54% and 22% identity with those of ligE and ligF, respectively. Disruption of ligE2 in SYK-6 resulted in a reduced conversion rate for MPHPV, suggesting the involvement of ligE2 in (BR)-MPHPV degradation. The ligE ligE2 double mutant no longer degraded one half of racemic MPHPV. All these results indicate that both ligE and ligE2 alone contribute to the degradation of (BR)-MPHPV. This work was supported in part by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Rural Biomass Research Project BM-D1310).

doi:10.1016/j.jbiotec.2010.08.085