P3.139 Direct molecular identification of dothideomycete specimens on plants using PCR-TGGE analysis
T. Mikawa*, S. Endo, M. Hasegawa, F. Ikeda, K. Hamano, N. Kinjo

P3.140 Species of podospora recovered from the dung of herbivores and their ecology
J. K. Misra*

P3.141 A new coelomycetous genus associated with die-back symptoms on apple trees in South Africa
M. Cloete, J. de Gruyter, P.H. Fourie, P.W. Crous, L. Mostert*

P3.142 Phylogeny of the genus Bryoria (Lecanoromycetes, Ascomycota)
L. Mylius*, S. Veilmah, H. Holien, T. Gowerd, P. Halonen

P3.143 On a Zygosporium species isolated from a termite nest with view of the generic reevaluation
G. Okada*, K-D An, Y. Aramisiruirjwet, M. Ohkuma

P3.144 A multigene phylogenetic assessment of species boundaries in Otidea
I. Olariaga*, K. Hansen

P3.145 Diversity and phylogeny of Lecanoraceae (Lecanorales: Ascomycota) in SE Asia
K. Papong*, K. Boonpragob, H.T. Lumbsch

P3.146 Multi-locus analysis of a citreoviridin-producing isolate previously identified as Penicillium NRRL 13013
S.W. Peterson*, Z. Jurjevic, A.C. Frisvad

P3.147 Two new species of fungal endophytes colonise Pinus sylvestris needles in Scotland
S.N.A. Reignoux*, S. Green, R.A. Ennos

P3.148 Integrated morphologic, metabolic, molecular and spectral methods for the identification of Aspergillus Section Flavi isolated from Portuguese almonds
P. Rodrigues*, C. Santos, A. Venâncio, N. Lima

P3.149 Taxonomic analysis, a first step for the promotion of the safe use of fungi in cheese fermentations.
J. Ropars*, J. Dupont, P. Renault

P3.150 Getting to know the fungi in Soil Clone Group 1
A. Rosling*, K. Cruz Martinez, A. Menkis, K. Ihrmark, S. Holmström, A. Broberg et al

P3.151 High levels of Botryosphaeriaceae diversity on native and introduced Acacia spp. in South Africa
J.A. Van der Linde, B.A.D. Begoude, J. Roux*

P3.152 New insights into systematics of lichenicolous fungi
C. Ruibal*, A.M. Millanes, D.L. Hawksworth

P3.153 Biodiversity of ascomycetes on trees native to the Andean Patagonian forests in Argentina
R.M. Sánchez*, M.V. Bianchiniotti

P3.154 A new species of pestalosphearia M.E. barr on bamboo from Thailand
N. Sanoamuang*

P3.155 Re-discovery of type specimens of Cordyceps and its allies described by Dr. Yosio Kobayasi
H. Sato*, S. Ban, H. Masuya, T. Hosoya

P3.156 Species of neophrum endemic to macaronesia belong to two strongly supported clades each comprising a widespread holarctic species and all are of recent origin
E. Sérusiaux*, J.C. Villarreal, T. Wheeler, B. Coffinet

P3.157 Patterns of host specificily in genus Abrothallus (lichenicolous Ascomycota)
A. Suija*, S. Pérez-Ortega, A. Crespo

P3.158 Four new species of Fusarium described from natural ecosystems in Australia

P3.159 Phylogeny and evolution of the tribe Erysiphieae (Erysiphaceae) with special reference to appendage morphology and host plants
S. Takamatsu*, Y. Shiroya, S. Limkaisang, H. Ito, Y. Heluta

P3.160 Phylogenetic and geographic distribution of the mating type idiomorphs in aurofusarin-producing Hypomyces spp.
H. Tamm*, K. Pöldmaa

P3.161 Molecular phylogeny of two coelomycetous genera with stellate conidia, Prosthemium and Asteroспорium
K. Tanaka*, V.A. Mel'nik, M. Kamiyama, K. Hiyama, T. Shirouzu

P3.162 Genomic and metabolomic analyses as tools for Fusarium classification
U. Thrane*

P3.163 Evolution analysis of yeast Saccharomycyes cerevisiae based on rDNA ITS region
C.J. Tian*, P.H. Wang

P3.164 Phylogenetic and vegetative compatible grouping analyses of Sclerotinia homoeocarpa causing dollar spot of turf grasses in Japan
Takao Tsukiboshi*, Toshihiro Hayakawa, Ikuko Okabe, Koya Sugawara

P3.165 Fungi of Serbia and the Western Balkans
G. Milosevic, D. Krstajic, B. Uzelac*

P3.166 The lichen genus Caloplaca Th. Fr. (Teloschistaceae) in Chile
R. Vargas*

P3.167 The biogeographic patterns in pyrenomycetous fungi and their taxonomy
Integrated morphologic, metabolic, molecular and spectral methods for the identification of *Aspergillus Section Flavi* isolated from Portuguese almonds

P. Rodrigues*1, 2, C. Santos1, A. Venâncio1, N. Lima1

1University of Minho, Portugal, 2CIMO-Mountain Research Centre, Portugal

*Aspergillus* is a large genus, with a complex and ever evolving taxonomy. Section *Flavi* is one of the most significant Sections in the Genus. Taxonomy and species identification is subject of great interest for scientists aiming to clarify the species concept and limits within the section. Furthermore, this Section comprises both toxigenic and non-toxigenic species/strains, with great interest to food industry.

Taxonomy of Section *Flavi* currently depends on multivariate approaches entailing both phenotypic (morphology, extrolite profiles) and molecular traits. No method works flawlessly in recognising species, so polyphasic approaches should be given emphasis in taxonomic decision-making.

This work aims to identify strains from Section *Flavi* by combining various methods, including morphological, biochemical and molecular ones, as well as the novel approach based on spectral analysis by MALDI-TOF-ICMS.

About 350 fungal isolates from Portuguese almonds, all belonging to Section *Flavi*, were characterised morphologically and biochemically. From those, 26 were selected for further analysis. Mycotoxigenic patterns, partial calmodulin gene sequences and MALDI-TOF protein spectra were analysed, dendrograms were created and results were compared.

We obtained good agreement between methods on species level identification. Additionally, the few incongruencies detected between morphological and biochemical data were well resolved with the molecular and spectral analyses.

Keywords: Aspergillus Section Flavi, taxonomy, polyphasic identification