INTRODUCTION

Massive research has been produced throughout the last decades in order to better understand the role of head-out aquatic exercises in population’s health (Barbosa et al., 2009). Indeed, such studies aimed to characterize the physiological acute and/or chronic response of subjects performing head-out aquatic exercises. Moreover, the comprehensive knowledge about the biomechanical (i.e. kinematical) behavior performing this aquatic activity is quite reduced.

Conducting head-out aquatic exercise sessions, instructors often use the music cadence to achieve a pre-imposed intensity of attention. Music cadences between 130 and 150 b.min⁻¹ are suggested by technical literature for head-out aquatic exercises (Kinder and See, 1992). At least one empirical study reported that for healthy and physically active subjects instructors should choose music cadences between 130 and 150 b.min⁻¹ (Barbosa et al., 2010).

Increases in the music cadence imposed significant increases in the acute physiological adaptation (e.g., rate of perceived effort, heart rate or blood lactate) of the subjects (Hoshijima et al., 1999; Barbosa et al., 2010). It is hypothesized that increased physiological response may be explained by the fact that increasing music cadence will also increase movement velocity and frequency, decreasing the segmental range of motion. However, to our knowledge there is no study in the literature reporting the kinematic changes imposed by an incremental cadence protocol at head-out aquatic exercises. The aim of this study was to analyze the relationships between muscular cadence and kinematical characteristics of a basic head-out aquatic exercise, when immersed to the bipedal process (i.e., breast). Six non-pregnant, clinically healthy and physically active young women holding a graduation degree in Sport Sciences and at least one year of experience conducting head-out aquatic classes volunteered to participate in this study (23.67 ± 0.52 y-old; 1.64 ± 0.07 m of height; 22.37 ± 2.06 kg.m⁻² of body mass). The normality of the distributions was assessed with the Shapiro-Wilk test. Linear regression equations models and its coefficients of determination were used to describe the relationships between musical cadence and kinematical variables. The level of statistical significance was set at P ≤ 0.05.

METHODS

It was evaluated the: (i) cycle period; (ii) 2D linear position ranges (foot, hand and centre of mass); 2D linear velocity ranges (foot, hand and centre of mass). The protocol consisted of five bouts of 16 repetitions performing the basic head-out aquatic exercise “rocking horse” (Figure 1) at the “water tempo” imposed to the subject (i.e., breast). Bouts intensity were 80 %, 90 %, 100 %, 110 % and 120 % of the cadence reported by Barbosa et al. (2010) to achieve a 4 mmol.⁻¹ of blood lactate, representing respectively 120 b.min⁻¹, 135 b.min⁻¹, 150 b.min⁻¹, 165 b.min⁻¹ and 180 b.min⁻¹ cadences. Musical cadence was controlled electronically by a metronome (Korg, MA-30, Tokyo, Japan) connected to a sound system.

The protocol was videotaped in sagittal plane with a pair of cameras providing a dual projection from both underwater (GR-SXM25 SVHS, JVC, Yokoama, Japan) and above (GR-SX1 SVHS, JVC, Yokoama, Japan) the water surface. The images of both cameras were recorded independently. The study comprised the kinematical analysis of the full cycle of the movement. Matlab software (version 7.8) was used to process the data. The protocol was divided into a) preparation stage, b) movement stage and c) evaluation stage. From each stage, the gaze direction and the velocity of the center of mass were recorded. The velocity of the center of mass was calculated by a double-passage filtering for the signal processing was used. It was averaged the: (i) cycle period; (ii) 2D linear position ranges (foot, hand and centre of mass); 2D linear velocity ranges (foot, hand and centre of mass). The normality of the distributions was assessed with the Shapiro-Wilk test. Linear regression equations models and its coefficients of determination were used to describe the relationships between musical cadence and kinematical variables. The level of statistical significance was set at P ≤ 0.05.

RESULTS AND DISCUSSION

Figure 1 presents a qualitative analysis from the centre of mass kinematics from a single subject during the second bout at 130 b.min⁻¹. Figure 3 reports the simple scattergram from the cycle period according to the musical cadence imposed. Figure 4 and 5 presents respectively the overlay scattergram for 2D displacement and 2D velocity according to the cadential cadence imposed.

CONCLUSION

As a conclusion, expert and fit subjects seem to increase segmental velocity with increasing cadences to avoid the decrease of the segmental range of motion.

REFERENCES


