Sustainable Management Models Applied to Chestnut Coppice in The North-East of Portugal

Maria do Sameiro Patrício, Sónia Geraldes, Luís Felipe Nunes and Maria do Loreto Monteiro

1. Centro de Investigação de Montanha – CIMO, ESAB, Instituto Politécnico de Bragança, Quinta Sta. Apolonia, Apartado 1772, 5301-665 Bragança, Portugal

Introduction

The sweet chestnut (Castanea sativa Mill.) is a valuable species in Portugal, namely in North-east region, both for fruit and timber production that is important to value because it plays an important economical role in this disadvantaged territory. So, a differentiation of management options is needed as an alternative to the traditional practices. The aim of this research is to study sustainable management models to produce timber with small, medium and large dimensions. These management models are compared with the situation “without intervention” which is the most frequent situation of the coppices in this region. At sixteen years old, we analyse the growth under different management models as well as the potentiality of the shoots to produce quality timber.

Materials and Methods

A trial with 4 permanent plots was established in a chestnut coppice in 1994, two years after the conversion of an old high forest stand, located in this region (41º 30' 41'' N, 7º 37' 15'' W). Three silvicultural management models were applied based on Bourgeois (1992) and adapted to our site conditions.

The treatments are: T1 = Model 1: small dimensions; T2 = Model 2: medium dimensions; T3 = Control: coppice without intervention; T4 = Model 3: Large dimensions. The shoots in the treatments are evaluated qualitatively using a graduation 1 to 5 in each parameter (1 corresponding to the worst and 5 to the best). The following parameters are considered:

- St - Stratification of the canopy (Kraft Classification)
- V - Vigour
- F1 - Stem form (cilioidricity)
- F2 - Stem form (curvature)
- F3 - Stem form (base curvature in the shoot)
- Br - Insertion height of medium and thick branches
- TQ1 - Timber quality of the first log (2.25 m)
- TQ2 - Timber quality of the second log (up to 4.50 m).

A PCA and RDA multivariate analysis is performed using qualitative variables of shoots. The growth in different treatments was analysed.

Silvicultural models applied to the chestnut coppice

<table>
<thead>
<tr>
<th>Cultural Operations</th>
<th>Height of dominant shoots in each stool (m)</th>
<th>Age (years)</th>
<th>Shoots per hectare before thinning</th>
<th>Shoots per hectare after thinning</th>
<th>Rotation age (years)</th>
</tr>
</thead>
</table>
| **Model 1**
| Small dimensions | 1 Thinning | 6-9 | 5-9 | 9000-15000 | 3000-3500 | 25-30 |
| | 2 Thinning | 10-12 | 10-14 | 3000 | 1500 |
| **Model 2**
| Medium dimensions | 1 Thinning | 6-9 | 7-9 | 9000-13000 | 2500-2600 | 30-35 |
| | 2 Thinning | 11-12 | 11-13 | 2500-3000 | 600-800 |
| **Model 3**
| Large dimensions | 10-12 | 10-13 | Selection of 150 to 250 future shoots ha-1 | 40-50 |

Results

- Number of shoots in the different treatments by diameter classes

The treatment T4 presents a small number of shoots but with better quality for timber.

- Eigenvalues and loadings for the first three components

<table>
<thead>
<tr>
<th>Components</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalue</td>
<td>3.630</td>
<td>1.2160</td>
<td>0.8554</td>
</tr>
<tr>
<td>Percent of explained variance</td>
<td>69.5</td>
<td>15.2</td>
<td>10.7</td>
</tr>
<tr>
<td>Cumulative Percent</td>
<td>69.5</td>
<td>84.7</td>
<td>95.4</td>
</tr>
</tbody>
</table>

Loadings

- T1 + Model 1
- T2 + Model 2
- T3 + Control
- T4 + Model 3

Conclusions

- The results show that the best timber quality of the shoots is associated to the treatments T2 and T4. The control "without intervention" is associated to a stratified canopy due to high competition between shoots in this case. The quality of timber of the shoots is worse in the control (T3) in comparison to the others. These results demonstrate that the quality of timber is better and more valuable when the silvicultural management models are applied.
- This study proved that there are advantages for the landowners in applying these management models concerning timber quality and sustainability of the chestnut areas.

References