Abstracts of the SFRR Europe 2007 Meeting
Vilamoura, Algarve, Portugal
10–13 October 2007
antioxidant activity (TAA) was measured by the ABTS^+ radical cation decolorization method. Serum α- and γ-tocopherol and malondialdehyde (MDA) were determined by HPLC. COMT Val108/158Met polymorphism was detected by tetramer primer ARMS-PCR. Specifically the COMT high activity allele (Val) was associated with a decreased serum antioxidant status at Ethmin respecting Ethmin, expressed by: (a) increased serum oxidant rates in the lag and propagation phases, and a decreased lag time; (b) decreased TAA; (c) decreased α- and γ-tocopherol content; and (d) increased MDA. We conclude that the COMT low activity genotype (Met/Met) confers antioxidant protection respecting the high activity allele during the ovulation stimulus achieved in IVF.

Supported by MSC (FIS/FEDER P02/0233), Gobierno Vasco (SAOTEK), MEC (grant to IA) and UPV (grant to AR).

P-010
Protection of anthocyanins against human LDL oxidation and their structure-activity relationship: A key component in the French paradox
Cristina Avezedo, Leonor Almeida, João Laranjinha, & Teresa Dinis
Laboratory of Biochemistry, Faculty of Pharmacy and Center for Neuroscience, University of Coimbra, 3000-295 Coimbra, Portugal

An increased interest in anthocyanins and their biological effects has emerged in the last years. They are a sub-group of flavonoids responsible for the colour and most of the benefits of moderate consumption of red wine. The present study was designed to evaluate and compare the antioxidant properties of four structurally related anthocyanins—peonidin, cyanidin, malvidin and malvidin-3-glucoside—against human LDL oxidation promoted either by AAPH-generated peroxyl radicals, or two physiologically relevant oxidants, ferrylmyoglobin and peroxynitrite. Their ability to recycle α-tocopherol (α-TOH), the most abundant LDL-lysophilic antioxidant, was also studied. When LDL oxidation was initiated either by AAPH or ferrylmyoglobin, as determined by the fluorescence decay of incorporated cis-parinaric acid and conjugated diene formation, these anthocyanins strongly inhibited LDL oxidative damage, cyanidin and malvidin being far more efficient as compared with peonidin. Also, malvidin-3-glucoside exhibited a stronger antioxidant activity than malvidin, the non-glycosylated derivative. Peroxynitrite-promoted LDL apoprotein modifications, as evaluated by apoB net surface charge alterations, were efficiently inhibited by cyanidin, malvidin or malvidin-3-glucoside, while almost no effects were observed with peonidin. Moreover, all the anthocyanins significantly decreased peroxynitrite-mediated carbonyl groups formation in LDL. EPR measurements of α-tocopheryl radical showed that the anthocyanins strongly reduce the signal intensity of that radical pointing to their highest abilities to recycle α-TOH, although malvidin-3-glucoside was far less effective. Our results corroborate the relevance of patterns of hydroxyl or methoxy substitution and glycosylation to the modulation of antioxidant activities of anthocyanins. Also, they suggest that the consumption of anthocyanins through the intake of red wine may greatly contribute to protect LDL from oxidative damage and, therefore, may be a key component in the French paradox.

Supported by FCT (POCI/AGR/S9919/2004).

P-011
Antioxidant status of human follicular fluid: Implications in female infertility
Fadi Bakladl,1, David Roua,1, Sandra González,2, José Luis De Pablo,1, Zalou Larreutegui,2, M. Luisa Hernández,1, M. Begona Ruiz-Larrea,1, & José Ignacio Ruiz-Sanz1
1Department of Physiology, Medicine and Dentistry School, University of the Basque Country, 11V Bilbao, Spain

The aim of this work was to determine the antioxidant status in follicular fluid and assess its involvement in woman infertility. ORAC (oxygen radical absorbance capacity) and TAC (total antioxidant capacity) were measured in follicular fluid aspirated from follicles during oocyte pickup from women enrolled in IVF therapy (n = 30) and were compared with the activities in follicular fluid aspirated from healthy control donors (n = 30). ORAC was measured by assessing the area under the fluorescence decay curve (AUC) of fluorescein with AAPH as free radical initiator in the presence of the sample as compared to that in the blank in which no antioxidant is present. The ORAC value was also determined in the soluble fraction after acetone deproteinization. TAC was measured by the ABTS^+ radical cation decolorization method. The follicular fluid of subfertile women exhibited a significant lower ORAC value compared with control donors (5783 ± 1237 vs 6892 ± 1066 µM Trolox, p = 0.021). No differences in either the ORAC value in deproteinized samples or TAC were found between both groups. In conclusion, the reduced antioxidant activity in the follicular fluid suggests a role for free radicals in women infertility, probably contributing to impairment of reproduction in these patients.

Supported by Gobierno Vasco (SAOTEK-S-PB06UN03 and grant to FB) and Iramel/Eramusckt (grant to DR).

P-012
Free radical scavenging activity of different almond (Prunus dulcis) varieties
João C. M. Barreita,1,2, Isabel C. G. F. Ferrein,1, Beatriz Oliveira,1, & José Alberto Pereira1
1CIMO-ESAB, Instituto Politécnico de Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855 Bragança, Portugal, & 2REQUIMTE - Service of Biochemistry, Faculty of Pharmacy of the Universidade do Porto, Rua António de Miranda, 416, 4099-009 Porto, Portugal

Reactive oxygen species are known to be implicated in many cell disorders and in the development of many diseases including cardiovascular diseases, atherosclerosis, cataracts, chronic inflammation or neurodegenerative diseases such as Alzheimer's or Parkinson's diseases. Thus, antioxidant compounds are widely used in the food industry, but, because of their toxic and carcinogenic effects, their use is being restricted. The pursuit for novel natural sources of bioactive compounds, namely those who present antioxidant activity, has been acquiring higher significance, since those compounds may contribute to the prevention of diseases in which free radicals are implicated. In this study, the antioxidant properties of different almond varieties (Casanueva, Doña Inmaculada, Ferradialis, Ferradilia, Forcal Star, Guara, Molin, Oruela de Molina and Figaruelas) were evaluated through several biochemical assays: DPPH (2,2-diphenyl-1-picyrylhydrazyl) radical scavenging activity, reducing power, inhibition of β-carotene bleaching, inhibition of oxidative haemolysis in erythrocytes, induced by 2,2-azo-bis-(2-amino-propane)hydrochloride (AAPH) and inhibition of lipid peroxidation in pig brain tissue through formation of thiobarbituric acid reactive substances (TBARS). For all the methods, EC50 values were calculated in order to evaluate the antioxidant efficiency of each variety. The total phenols and flavonoid contents were also obtained and correlated with antioxidant activity. Forcal Star and Doña Inmaculada revealed better antioxidant properties, presenting lower EC50 values, particularly for lipid peroxidation inhibition in TBARS assay. The highest antioxidant contents (phenols and flavonoids) were also found for those varieties.

Foundation for Science and Technology (Portugal) gave financial support to J.C.M. Barreira (SFRH/BPD/29060/2006), and Program INTERREG IIIA, Project FIREFI.

P-013
Free radical scavenging activity and bioactive compounds of five Agaricus sp. edible mushrooms
Lilian Barros, Paula Baptista, Daniele M. Correia, & Isabel C. G. F. Ferreira
CIMO-ESAB, Instituto Politécnico de Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855 Bragança, Portugal

Reactive oxygen and free radicals play an important role in cellular injury and the ageing process and also are considered to induce the lipid peroxidation that causes the deterioration of foods. Although organisms have endogenous antioxidant defences produced during normal cell aerobic respiration against the reactive oxygen species, other antioxidants are taken from the diet, both from natural or synthetic origin. Thus, synthetic antioxidants are widely used in food industry, but because of their toxic and carcinogenic effects their use is being restricted. Individual tocopherol profile of five Agaricus mushroom species, widely consumed in Portugal, was obtained by high performance liquid chromatography coupled to a fluorescence detector.