Natural Heritage from East to West
Case studies from 6 EU countries

The publication originated within the Leonardo da Vinci Pilot Project "EduNatHer: Educational Strategies for the Promotion of Natural Heritage" supported by EU funds. The Leonardo da Vinci Pilot Project is one of the longest-running instruments of cooperation among educational organizations and researchers across Europe. The book is the result of cooperation among academic and research institutions from six countries – Greece, Romania, Portugal, Italy, Malta, and Turkey – and its focus is on natural landmarks and monuments from those countries. The main objective is to help strengthening links between scientific organizations, and public and private sectors involved in preservation and management of natural sites. The case studies presented, distributed in Europe east to west, are of relevant environmental or educational value.

Ms. Niki Evelpidou has a PhD in Geology and a PhD in Geochronology. Covering the research topics of Geomorphology, Natural Hazards, and GIS, she is teaching subjects of geomorphology and GIS in the University of Athens and has published 5 academic books and more than 20 research papers.

Tomás de Figueiredo graduated and PhD in Agronomic Engineering, Professor in Geosciences at Instituto Politécnico de Bragança, Portugal, member of CIMO, Mountain Research Centre, Bragança, leading research group on Mountain Farming System, research in Erosion and Soil and Water Conservation.

Vahap Tecim, graduated in Economics (BA), Econometrics (MA). Systems Science (MSc) and Operations Research/Management Science (PhD). Professor in Operations Research at Dohuz Eyyuk University. Director of the department of GIS, IT, GIS System analysis, project planning are the main research interests.

Andreas Vassiopoulos (Dr. in Geology, Dr. in Geoarchaeology) is research fellow at ISTA (Sesamone University, France), at Remote Sensing laboratory (Athens University, Greece) and Professor on Geoinformation at Chalkis Technological Institute.

ISBN 978-3-642-01576-2
Natural Heritage from East to West

Case studies from 6 EU Countries
Montesinho Natural Park: General Description and Natural Values

J. Castro, Tomás de Figueiredo, Felícia Fonseca, João Paulo Castro, Silvia Nobre, and Luís Carlos Pires

The Physical Environment

The Montesinho Natural Park (PNM, Parque Natural de Montesinho) is a protected area located in the municipalities of Vinhais and Bragança, in the administrative NUT Alto Trás-os-Montes (PT118), the mountainous region of northeast Portugal. It was created in 1979 and consists of 748 km² of natural wooded landscape and traditional mountain agricultural landscape, with highly variable gradients. PNM lies in the vast northeast Trás-os-Montes plateau, with average altitude around 750–900 m, which is part of the Iberian Meseta northern block (Medeiros, 1987; Ribeiro et al., 1987). However, in PNM elevation ranges more than 1,000 m, from the lowest point in the River Mente (436 m), its western border, to the top of Montesinho, at 1,487 m. The main altitudinal belts correspond also to the main landforms found in the area.

Most of the territory is in two areas, both below 1,000 m. The largest one is between 700 and 1,000 m, where most of the plateau lies. It is well defined in

Cytisus spp and Erica spp vegetation in a mosaic between França and Aveleda, with Serra de Montesinho on the horizon (photo by T. de Figueiredo)
the east, especially in Alta Lombada, a surface around 900 m elevation, whose “dark dorsal, poorly vegetated, with its regular outline, closes the horizon Bragança eastwards.” (Taborda, 1987). In the west, the plateau is made of small platforms; these are transitional tracts between deep valleys and the neighboring highlands (Agroconsultores e Coba, 1991).

Most of the rivers in the area run below 700 m, and their valleys are the dominant landform in this area. Deep, with narrow bottom and steep slopes, i.e. V-shaped, they strongly contrast with the planar or rounded crests in the interfluves. Also below 700 m, Baixa Lombada is a large, fertile, low-lying area north of Bragança (Gonçalves, 1980). It is a tectonic depression that contrasts with the high plateau of Alta Lombada, its eastern neighbor (Pereira et al., 2003).

In the mountains, above 1,000 m elevation, human occupation is almost non-existent and hence cultivated land almost disappears, giving way to highland pastures (Agroconsultores e Coba, 1991). This contour bounds the mountain domains and surrounds the three highest peaks of the area, the southern edges of the Spanish Galician-Leonese mountains (Pereira et al., 2003): Coroa (1,272 m), Nogueira (1,318 m, in fact outside but close to the southern border of PNM) and Montesinho (1,487 m). The summits of these three mountains follow a morphological pattern found all over Trás-os-Montes: leveled hilltops, small areas of land corresponding to old erosion surfaces (Taborda, 1987).

Since it is an area of ancient rocks, some of the oldest in Portugal (see article by Meireles in this chapter), PNM reflects in its relief a remarkable morphogenetic activity, mainly due to the erosive action of running water, reshaping the surface and redistributing material in the landscape (Agroconsultores e Coba, 1991; IPB/ICN, 2006). Hypsometry and hydrography have thus been coupled in forming the land, on which plant communities have installed themselves, soils have deepened, humans have settled and which is finally opening to tourism and the interest of entrepreneurs.

Streams drain the whole area to the Douro River, more than 100 km to the south. The Douro is the Portuguese river with the largest drainage basin (though 4/5 of it is in Spanish territory), and it ranks second in total length (after the Tagus). The Douro drainage basin accounts for 1/3 of the Portuguese surface water resources and half of the energy generated in hydropower plants (Ferreira, 2005). Adding to its economic importance, the Douro drainage basin also hosts important terrestrial and aquatic wildlife habitats, including those of PNM.

Headwaters of two major tributaries of the Douro are in Montesinho, Tua and Sabol, the catchment divides being in fact across the border, in Spain. The Rabagal and the Tuela, joining to form the Tua some 50 km to the south, are the largest rivers on the western side of PNM. The drainage basin of the Baceiro, a local tributary of Tuela, provides very significant examples of balanced land use in humanized landscapes (Gonçalves, 1980; IPB/ICN, 2006). The Sabol basin covers the eastern half of PNM and comprises the Sabol River itself (the largest in the area, with the largest drainage basin of Douro right bank tributaries), and the Macãs, which drains the driest tracts of the Sabol basin.

In the area, as a whole, mean annual river discharge is 1/3 of precipitation; however, catchments have higher water yield in the west than in the east (Gonçalves, 1985). Following a common trend, explained by precipitation and vegetation cover decrease, inter-annual and seasonal variability of river discharge tends to increase from west to east (Henriques, 1985). Drainage density is high in the area, where stream networks are mainly controlled by geological fracture distribution (Pereira et al., 2003). The steep slopes of catchment surface and riverbeds, prevalent in this mountain domain, affect runoff and discharge, determining the habitat for aquatic species and stream ecology (see below). The effect of geological basement on catchment characteristics is clear when comparing drainage texture over granite and
schist areas, the two main lithologies prevailing in PNM (Figueiredo and Fonseca, 1997).

Climate in Montesinho is Mediterranean, although other influences, derived from the geographic position and the relief of this area, affect the general pattern (Gonçalves, 1985). Continental effects come from the inner Iberian Peninsula, as Atlantic influence is hampered by impressive mountain ranges (more than 1,500 m elevation in the west and more than 2,000 m in the north, in Sanabria, Spain, close to the border). They bring an increase in seasonal contrast (annual range is 15–20°C), in dryness, and in inter-annual variability. Continental effects are relevant in the eastern tract of PNM but they are drowned out to the centre and west and where the mountain effects take their place. Altitude is in fact the factor that best explains spatial variations in temperature (most of the area is below 12°C) and precipitation (mostly over 800 mm) (Gonçalves, 1985; Figueiredo, 1990).

Regional climatology labels Montesinho as “Terra Fria” (cold land), as opposed to “Terra Quente” (hot land), typical of the southern depressions and valleys less than 400 m elevation (Gonçalves, 1991b). In “Terra Fria” (annual temperature, T<12.5°C), there is almost no transition between a short and hot summer and a long lasting winter, with the largest frosty season in Portugal (from mid-October to mid-May) (Agroconsultores e Coba, 1991; Gonçalves, 1991a; Ribeiro, 1996). Expressively, “Terra Fria” in a regional saying is “Noves meses de Inverno e três de Inferno” (freely translated to “winter for nine months, hell for the other three”). Most of the area of PNM lies on a plateau landscape (“Terra Fria de Planalto”), where annual precipitation is over 800 mm west of Bragança, although it is lower to the east. The mountain (“Montanha”) and high mountain (“Alta Montanha”) landscapes are the typical of these altitudinal domains (T 9–10°C and T < 9°C, respectively), where total yearly rainfall is 1,200 mm or more, rising above 1,400 mm in the highest crests, partly falling as snow in winter. Small patches of transitional conditions (“Terra de Transição”, T > 12.5°C) are found in the valleys close to the southern boundary of PNM.

The history of a wide variety of outcropping rocks (e.g. schist, granite, mafic and ultramafic rocks, unconsolidated sedimentary materials) makes PNM such a striking territory (see article by Meireles in this chapter). From them, soils have formed bearing vegetation; and both have developed in a wide variety of topographic and climatic conditions.
along the few wider valley bottoms, over alluvial parent material. Regosols, above colluvial deposits, also occur in small patches, scattered all over the area. The former are deeper than the latter, they both make up the large group of incipient soils present in PNM.

In nearly half of the PNM the soils have a carbon rich surface (A) horizon (hence qualifying as umbric at secondary level). These are in well vegetated elevated areas, roughly above 900 m, where colder and wetter climatic conditions enhance the accumulation of organic matter. Soils are acid or very acid in most of the PNM area, either due to high organic content and or to parent material characteristics. In fact, soil units qualifying as eutric, which are non acid, cover only 4% of the area, strictly over basic lithology. Soils on the very steep slopes, in less than one tenth of the Park, qualify as lithic because hard rock is at very shallow depth (less than 0.1 m).

Soil properties reflect the processes and factors acting during soil formation and development. Although pedogenetic processes show incipient results, the influence of soil formation factors is clearly evident in major features of regional soils; this is true of PNM (Figueiredo, 2001). These effects have been implicitly mentioned, in part, above: the effect of climate on soil organic matter, of parent material on soil chemistry, of topography on soil depth. Other examples follow. Parent material also affects soil texture, since granite-derived soils are rich in coarse sand, those formed over schist are silt-rich, and those of basic rocks and sedimentary deposits have more clay. The combined effect of climate and topography on the extent of rock fragments in the soil explains the presence of stony soils on gentle slopes in the drier areas; these are rarer in the wetter ones. Vegetation and land use affect carbon content. This is 3.5–4.5% on average in the A horizon of soils under forest, pasture or shrub cover, against 1% under annual and permanent crops. Even though this is an indication of the widely accepted detrimental effect of land use in soil resources, as explained later in this paper, Montesinho depicts striking examples of balanced farming systems in humanized landscapes, coming from traditional expertise in soil quality assessment and soil conservation principles based on good management practices.

Man and Land Use

The PNM includes 92 small villages inhabited by less than 8,000 people. Demographically the western part of PNM, although less populated, has many villages, most of them with less than 200 inhabitants; the eastern part villages are fewer in number but more populated, frequently over 300 inhabitants. Economically the PNM still produces grains, chestnuts and livestock, especially cattle and sheep. In recent years agriculture has declined, abandonment of the villages persists and the population is ageing. Most of the villages have too few children to keep the rural schools open. But it has been the traditional family livelihood of PNM inhabitants, which is based on small farming and sheep herding, that contributed definitely to the conservation of biodiversity in the region. For centuries, more than 50% of the territory was communal land, an ancestral Portuguese and European system of land property and management. Most of that land was privatized or taken by the State in the nineteenth and twentieth Centuries and today only one third of PNM remains communally owned (IPB/ICN, 2006).

The western part of the Montesinho Natural Park lies in the northern half of Vinhais municipality, where good examples of rural and agricultural lifestyles combined with wildlife preservation are found. At present, sweet chestnut *Castanea sativa* plantations are the main driver of economic activity in Vinhais. Cattle husbandry of the local breed *Mirandesia* is also economically important but unfortunately it is declining. Upland meadows, marked by a good network of hedgerows dominated by ash *Fraxinus angustifolia*, elm *Ulmus procera*, alder *Alnus glutinosa* and poplars *Populus* sp., together with heath lands and cropland, compose a very green landscape, typically associated with *Mirandesia* husbandry. Recently created is a Biological Park ("Parque Biológico de Vinhais"), in Cidadelhe Mountain, which aims to generate a better understanding of wildlife in this area.

The eastern part of the Montesinho Natural Park corresponds to the northern part Bragança municipality. Here, forestry, sheep herding and agriculture also combine with wildlife preservation. The Natural Park took its name from the most northern mountain of Bragança municipality that reaches an altitude of 1,487 m. The vegetation is composed of scrubs of *Erica* spp., *Genista* spp., *Chamaesparrum* sp. and *Salix* spp. Montesinho is the only village at such heights; agricultural activity has decayed over approximately 20 years but tourism and recreational activities have become more and more significant. For most of the year there are only about 200 sheep grazing; however, grazing can be very intense from May to August when about 5,000 sheep are transported from the surrounding lowlands to graze in the highlands during summer months. Consequently, this area is very often subjected to wild fires that are mainly induced by shepherds who wish to obtain better grazing (Geraldes and Bouvada, 2003). *Serro Serrevedo* reservoir, built to supply water to the city of Bragança and to generate hydroelectric power, is located in this mountain.

![Chestnut trees (*Castanea sativa*) in Vinhais area. Economically a very important product; the fruits also form part of the PNM logo.](photo by S. Nobre)

!["Mirandesia" autochthonous cattle breed; grazing meadow in Babé.](photo by A. Borges)
Major Natural Values

The main native forest cover was oak (Quercus pyrenaica) and chestnut trees (Castanea sativa). After centuries of destruction, wildlife populations are now recovering in the region in response to lessening of human pressure coupled with the expansion of scrub areas, better protection laws, the positive action of the Park management authority and a slow change in the attitude of individuals towards wildlife. Biodiversity is currently high but the densities of wild populations are lower than in the past (some, such as bear and lynx, reduced to extinction), mainly because man has destroyed most of the native forests. At the beginning of the twentieth Century, deer were exterminated, but by 1989, they came back via populations in Spain (Alves, 2004).

This Park has a high flora and fauna diversity and the latter expressively contributes to its emblematic biodiversity. All of the trophic levels are present and large carnivores and wild and domestic herbivores coexist in the region. A population of about 30 Iberian wolves (Canis lupus signatus Cabrera) lives in the Park and it is linked to a larger population of more than 120 wolves in neighboring regions in Portugal and Spain. Other carnivores include common genet and red fox (Vulpes vulpes). Wild bear (Ursus arctos), roe deer (Capreolus capreolus Linnaeus), deer (Cervus elaphus Linnaeus) and, as mentioned above, domestic herbivores such as cattle, goat and sheep regional breeds, all inhabit the Natural Park. Main aquatic mammal species is the European otter (Lutra lutra) (IPB/ICN, 2006).

Stream banks in PNM are covered by dense riparian vegetation dominated by alder Alnus glutinosa, ash Fraxinus angustifolia, poplar Populus nigra and willows Salix sp., limiting the primary production in these systems where the food webs are energetically dependent on allochthonous inputs of organic matter (Teixeira and Cortes, 2007).

These streams and their dense riparian galleries represent key features for the high level of biodiversity preservation in the PNM. They are subjected to a reduced human pressure, which contributes to low impact on water composition. The fish community is dominated by native brown trout Salmo trutta populations, but endemic cyprinid species are also present, such as the Iberian chub Squalius carolitertii, the Iberian nase Chondrostoma duriensis, Squalius albinoideus and Barbus bocagei. The brown trout are present in the upper reaches of these rivers, whereas the cyprinids cohabit with trout, although in low densities, in the lower ones (Teixeira and Cortes, 2007). The water temperature ranges from a winter minimum of 4°C to a summer maximum of 20°C and their ecosystem function is, as
already stressed, highly dependent on the input of allochthonous materials (Teixeira and Cortes, 2006).

Lower reaches include many old watermills, most of them abandoned or destroyed, but also with some good examples of structural and functional rehabilitation for tourism, recreation, and environmental and cultural education. They were essential to mill all cultivated cereals, mainly rye and wheat, the basis of human sustainability for centuries. The watermills required the presence of a succession of small artificial weirs creating the corresponding deep pools and riffles. The impact of human activities in these systems is limited because population is scarce and agriculture is extensive with low fertilizer input, thus contributing to the good water quality found all along the streams. However, an increase in fishing pressure, often using illegal procedures (poison, nets), is responsible for the gradual decrease of natural trout stocks and has lead local authorities to follow active management programmes, such as the implementation of stocking operations.

Remnant woodlands of Holm Oak (Quercus ilex) represent also important spots of diversity in the PNM, in spite of covering only around 3,000 ha. Usually they are small in size and simple in shape, and occur close to each other, frequently located towards the bottom of very steep slopes, facing West Northwest and East Southeast, and relatively close to ephemeral streams. However, these woodlands intercept these streams in most of the cases. Their patterns do not change when woodlands are considered according to their development stage (Dias and Azevedo, 2008). Most

of these holm oak remnant woodlands are over mafic and ultramafic rocks derived soils that are frequent in this territory and have very particularly vascular indigenous or synantropic plant taxa (Aguiar, 2002, see also article by Sequeira et al. in this chapter).

Productive forests were introduced during the twentieth century and most of them are pure stands of several species, the most important being Pinus pinaster Ait. and P. nigra Arn., and the less represented P. sylvestris L. and P. strobus L. Every year those pine stands are severely attacked by T. pityocampa, a forest pest that field observations and experimental confirmation suggested preference for this host (Arnaldo and Torres, 2006). These plantations were promoted by the National Forest Service and included also Pseudotsuga menzeisii as well as some deciduous species, Betula alba and Quercus robur, which are common in the highlands of Montesinho and Coroa mountains. Stands have approximately uniform tree density and natural thinning, natural regeneration and lack of management have created clearings of different sizes. A shrub understorey is composed dominantly by Erica spp., Ulex spp., Cistus spp. and Cyttis spp.

These plantations are common in the eastern part of PNM, where they have been an important winter habitat used both by red and roe deer. Distributions of red and roe deer populations overlap and have been recently expanding in PNM, partially due to favorable habitat changes and limited culling policies adopted by the Park management authority. Estimated densities of red and roe deer in the area are approximately of 0.03–0.04 and 0.01–0.02 individuals/hectares, respectively (Ramos et al., 2006). Deer rubbing of adult trees is thought to be an important source of economic losses in the area. Damage to trees, in orchards and agricultural crops, has been increasingly reported by farmers and foresters inhabiting the area.

Fauna and Flora Values Formally Recognized in the PNM

A harrier (Circus pygargus) and a dove (Streptopelia turtur) are the highest naturalistically valued birds of PNM. Three mammals – the Iberian wolf (Canis lupus), a mole (Galemys pyrenaicus) and an otter (Lutra lutra) –, one reptile – a turtle (Mauremys leprosa) – and an invertebrate – a freshwater pearl mussel (Margaritifera margaritifera) – are also considered excellent natural values of PNM Fauna. Many flowering plants that occur in PNM are classified as excellent value such as Dionysus marilis, Festuca brizantina, F. elegans, F. samuellistancia, Jasione crispa ssp. Serpentinica, Santolina semidentata, and Veronica micrantha.
Many other species are classified as of good nature value such as the birds – Anthus cantemirus, A. spinolletta, A. trivialis, Aquila chrysaetos, Asio flammeus, Bubo bubo, Caprimulgus europaeus, Ciconia nigra, Circus cyaneus, Emberiza hortulana, Falco peregrinus, Lanius collurio, Monticola saxatilis, Oenanthe hispanica, O. oenanthe, Perhix apivorus, Phoenicurus phoenicurus, Sylvia borin –, the fishes – Chondrostoma polyepis and Rutulus alburnoides –, the invertebrate – Unio crassus – and the flowering plant – Narcissus asturienis.

Natural and semi-natural habitats mixed in the PNM landscape gradients are essential to maintain all of these species. The habitats recognized as having global excellent value are the dry heaths and the oak woods with Quercus pyrenaica; many other habitats are recognized as of global good value such as the Castanea sativa woods, the endemic heaths with gorse, the hydrophilous tall herb fringe communities of plains and mountain, the lowland hay meadows, the pseudo-steppes with grasses and annuals, the Quercus ilex and Quercus rotundifolia forests, the rivers with muddy banks, the siliceous rocky slopes with chasmosphylic vegetation, the temperate Atlantic wet heaths, and the water courses at all levels, from the mountains to the plain (http://eunis.cee.europa.eu/).

Photos By

A. Carvalho, IPB / ESA / CIMO, anacarv@ipb.pt
A. Borges, Arborea, Vinhais, aborges@arborea.pt
A. Suarez, IPB, atilano@ipb.pt

Meadow along a meandering stream with riparian corridor, near Babo (photo by A. Carvalho)

References

