Chapter 1. Invited Lectures
Chapter 2. Biomechanics
Chapter 3. Physiology and Bioenergetics
Chapter 4. Training and Performance
Chapter 5. Education, Advice and Biofeedback
Chapter 6. Medicine and Water Safety

Biomechanics and Medicine in Swimming XI
Per-Ludvik Kjendlie, Robert Keig Stallman, Jan Cabri (eds)

Biomechanics and Medicine in Swimming XI
Per-Ludvik Kjendlie, Robert Keig Stallman, Jan Cabri (eds)
Biomechanics and Medicine in Swimming XI

Per-Ludvik Kjendlie, Robert Keig Stallman, Jan Cabri (eds)
Scientific Committee
Kjendlie, Per-Ludvik, NOR, (Chair)
Stallman, Robert, NOR, (Chair)
Cabri, Jan, NOR, (Chair)
Alves, Francisco (POR)
Arellano, Raul (ESP)
Aspenes, Stian (NOR)
Barbosa, Tiago (POR)
Castro, Flavio (BRA)
Chatard, Jean Claude (FRA)
Chollet, Didier (FRA)
Clarys, Jan Pieter (BEL)
Costill, David (USA)
da Silva, Antonio (POR)
Daly, Dan (BEL)
Dekerle, Jeanne (FRA)
Dopsaj, Milivoj (SRB)
Esser-Noethlics, Marc (NOR)
Fernandes, Ricardo (POR)
Hollander, Peter (HOL)
Issurin, Vladimir (ISR)
Jurimae, Toivo (EST)
Keskinen, Kari (FIN)
Langendorfer, Steven (USA)
Lemyre, Nicolas (NOR)
Mason, Bruce (AUS)
Millet, Gregoire (SUI)
Moran, Kevin (NZL)
Nomura, Teruo (JPN)
Ogita, Futoshi (JPN)
Onodera, Sho (JPN)
Payton, Carl (GBR)
Pendegast, David (USA)
Prins, Jan (USA)
Psychariakis, Stelios (GBR)
Pyne, David (AUS)
Rejman, Marek (POL)
Rodrigues, Ferran (ESP)
Sanders, Ross (GBR)
Seifert, Ludovic (FRA)
Stager, Joel (USA)
Swaine, Ian (GBR)
Toussaint, Huub (HOL)
Ungerechts, Bodo (GER)
Vikander, Nils (NOR)
Vilas-Boas, João Paulo (POR)
Wakayoshi, Kohji (JPN)
Zamparo, Paola (ITA)

BMS International Steering Group
Kari Keskinen, Finland (Chair)
Jan Pieter Clarys, Belgium
Bodo Ungerechts, Germany
João Paulo Vilas-Boas, Portugal

Local Organizing Committee
Robert Stallman (Chair)
Per-Ludvik Kjendlie (Chair)
Cabri, Jan (Chair)
Bakke, Tom Atle
Caspersen, Cecilie
Dahl, Dugmar
Keskinen, Kari (intn. advisor)
Midun, Ingvild Riise
Olstad, Bjørn Harald
Steinbekken, Karoline
Vilas-Boas, João Paulo (intn. advisor)

Sponsors
The publishing of this book was supported by:
The Norwegian School of Sport Sciences
Department of Physical Performance
Norwegian Research Centre for Training and Performance
Norwegian Swimming Federation
Norwegian Life Saving Society
Norwegian Rheumatism Association

AP Lab
Coaches Infoservices
Cortex Biophysik GmbH
Hector Engineering Inc.
Ide AS
Klubben AS
Nespresso
Pahlen Norge
Sensorize Srl
Sport-Thieme GmbH
Tine AS
Vita
Voss Water
Table of Contents

Preface

Biomechanics and Medicine in Swimming; 40 Years of Swimming Science.

Chapter 1. Invited Lectures

- Applying a Developmental Perspective to Aquatics and Swimming – Langendorfer, S.J.
- The Psycho-Physiology of Overtraining and Athlete Burnout in Swimming – Lemyre, P.-N.
- Biomechanical Services and Research for Top Level Swimming: the Australian Institute of Sport Model – Mason, B.R.
- Aquatic Training in Rehabilitation and Preventive Medicine – Prins, J.

Chapter 2. Biomechanics

Effect of Stroke Drills on Intra-cycle Hip Velocity in Front Crawl – Arrillano, R., Domínguez-CASTELLI, R., Perez-Infantes E., Sánchez E.

The Usefulness of the Fully Tethered Swimming for 50-m Breaststroke Performance Prediction – Barbosa A.C., Milivoj Dopsaj M.2, Okicic T.

Do Fastskin Swimsuits Influence Coordination in Front Crawl Swimming and Glide? – Chollet, D., Chavallard, E., Seifert, L., Lemaitre, F.

The Effect of Wearing a Synthetic Rubber Suit on Hydrostatic Lift and Lung Volume – Cortesi, M., Zamparo, P., Tam, E., Du Bois, M., Gatta, G.

The Development of a Component Based Approach for Swim Start Analysis – Casson, J.M., Slawson, S.E.2, Justham, L.M., Conway, P.P.2, West, A.A.

Pulling Force Characteristics of 10 s Maximal Tethered Eggbeater Kick in Elite Water Polo Players: A Pilot Study – Doppai, J.

Motor Coordination During the Underwater Undulatory Swimming Phase of the Start for High Level Swimmers – Elfipat, M., 2, Houl, N. 2, Hellard, P. 2, Distich, G.

Measuring Active Drag within the Different Phases of Front Crawl Swimming – Fontana, P., Mason, B.R. & Burkeett, B. J.

The Mechanical Power Output in Water Polo Game: a Case Report – Gatta, G., Fantozzi, S., Cortesi, M., Pati, F., Bonfazi, M.

Combination of Combinations of Vectors to define the Plane of the Hand in order to calculate the Attack Angle during the Sculling Motion – Gomes, L.E.1, More, M.O.1, La Torre, M. 1, Lou, J.F.

Relationship between Eggbeater Kick and Support Scull Skills, and Isokinetic Peak Torque – Homma, M.

Kinematic Analysis of Undulatory Underwater Swimming during a Grab Start of National Level Swimmers – Houel, N., Elfipat M., André F., Hellard H.

Comparison of Front Crawl Swimming Drag between Elite and Non-Elite Swimmers Using Pressure Measurement and Motion Analysis – Ichikawa, H., Mizu, T., Takeda, T., Takagi, H., Tsuhakimoto, S.

Whole Body Observation and Visualized Motion Analysis of Swimming – Imo, S., Okuno, K.

A Full Body Computational Fluid Dynamic Analysis of the Freestyle Stroke of a Previous Sprint Freestyle World Record Holder – Keys, M.I., Lytle, A.2, Blanksby, B.A.1 & Cheng, L.

An Analysis of an Underwater Turn for Butterfly and Breaststroke – Kishimoto, T., Takeda, T., Sugimoto, S., Tsuhakimoto, S.2 and Takagi, H.

Preface

Biomechanics and Medicine in Swimming; 40 Years of Swimming Science.
Preface

Chapter 3. Physiology and Bioenergetics

Models of Vertical Swimming Abilities in Elite Female Senior Water Polo Players - Dospai, M. 192

Critical Velocity and the Velocity at Maximal Lactate Steady State in Swimming - Espada, M.A., Alves, E.B. 194

Modelling the VO2 Slow Component in Elite Long Distance Swimmers at the Velocity Associated with Lactate Threshold - Hallard, P., Dekerle, J., Nesi, X., Toussaint, J.F., Houel, N., Hauswirth, C. 196

The Impact of Tension in Abdominal and Lumbar Musculature in Swimmers on Ventilatory and Cardiovascular Functions - Henrich, T.W., Pankey, R.B., Soukup, G.J. 199

Relationship between Propelling Efficiency and Swimming Performance in Elite Swimmers - Huang, Z., Karube, K., Nishiwaki, M., Ozawa, G., Tanaka, T., Taguchi, N., Ogita, F. 201

Effect of Increasing Energy Cost on Arm Coordination at Different Intensities in Elite Sprint Swimmers - Komar, J.J., Lepétrie, P.M.2, Alberty, M., Fernandes, R.J., Hallard, P., Chollet, D., Seifert, L. 204

Swimming and Respiratory Muscle Endurance Training: A Case Study - Lemaître, F., Chavallard, F., Chollet, D. 206

Identifying Determinant Movement Sequences in Monofin Swimming Technique - Rejman, M. & Starzakiewicz, A. 160

Evaluation of the Gliding Capacity of a Swimmer - Reig, A. 163

Effects of a BlueeveRYTM Bodysuit on Spatial-temporal and Coordinative Parameters During an All-out 50-m Front Crawl - Silveira, R.P., Kanzaki, J.Y., More, F.C., Castro, F.A.S. 165

Fatigue Analysis of 100 Meters All-Out Front Crawl Using Surface EMG - Stirn, I., Jarm, T., Kapus, V., Strojnik, V. 168

Comparison Among Three Types of Relay Starts in Competitive Swimming - Takada, T., Takagi, H., Tsukahakimoto, S. 170

A Study About the 3D Acceleration in Front Crawl and its Relation With Performance - Tell, V., Madera, J., Colado, J.C., Mateu, J., Garcia Masso, X., Gonzalez, I.M. 173

Aquatic Space Activities – Practice Needs Theory - Ungerechts, B., Klauck, J. 175

The Validity and Reliability of a Procedure for Competition Analysis in Swimming Based on Individual Distance Measurements – Yéga, S., Cala, A., Gonzalez Frutos, P., Navarro, E. 182

An Analysis of the Underwater Gliding Motion in Collegiate Competitive Swimmers - Wada, T., Sato, T., Ohishi, K., Tago, T., Izumi, T., Matsumoto, T., Yamamoto, N., Isaka, T., Shimoyama, Y. 185

Head Out Swimming in Water Polo: a Comparison with Front Crawl in Young Female Players - Zamparo, P., Falco, S. 187

Chapter 3. Physiology and Bioenergetics

Models of Vertical Swimming Abilities in Elite Female Senior Water Polo Players - Dospai, M. 192

Critical Velocity and the Velocity at Maximal Lactate Steady State in Swimming - Espada, M.A., Alves, E.B. 194

Modelling the VO2 Slow Component in Elite Long Distance Swimmers at the Velocity Associated with Lactate Threshold - Hallard, P., Dekerle, J., Nesi, X., Toussaint, J.F., Houel, N., Hauswirth, C. 196

The Impact of Tension in Abdominal and Lumbar Musculature in Swimmers on Ventilatory and Cardiovascular Functions - Henrich, T.W., Pankey, R.B., Soukup, G.J. 199

Relationship between Propelling Efficiency and Swimming Performance in Elite Swimmers - Huang, Z., Karube, K., Nishiwaki, M., Ozawa, G., Tanaka, T., Taguchi, N., Ogita, F. 201

Effect of Increasing Energy Cost on Arm Coordination at Different Intensities in Elite Sprint Swimmers - Komar, J.J., Lepétrie, P.M.2, Alberty, M., Fernandes, R.J., Hallard, P., Chollet, D., Seifert, L. 204

Swimming and Respiratory Muscle Endurance Training: A Case Study - Lemaître, F., Chavallard, F., Chollet, D. 206
Heart Rate Responses During Gradually Increasing and Decreasing Exercise in Water - Nishimura, K., Nise, Y., Yoshioka, A., Kawano, H., Onodera, S., Takamato, N.

Effects of Recently Developed Swimwear on Drag During Front Crawl Swimming - Ogita, F., Huang, Z., Kurobe, K., Ozawa, G., Taguchi, T., Tanaka, T.

Relationship between Heart Rate and Water Depth in the Standing Position - Onodera, S., Yoshioka, A., Matsumoto, N., Takahara, T., Nishiyama, Y., Hirota, M., Seki, K., Nishimura, K., Baik, W., Hara, H., Murakawasawa, T.

Hormonal, Immune, Autonomic and Mood State Variation in the Initial Preparation Phase of a Winter Season, in Portuguese Male Swimmers - Rama, L., Alves, F., Teixeira, A.

Oxygen Uptake Kinetics and Performance in Swimming - Reis, J.F., Alves, F.B.

Maximum Blood Lactate Concentration after Two Different Specific Tests in Freestyle Swimming - Rozzi, G., Thanopoulos, V., Dopsaj, M.

Can Blood Glucose Threshold be Determined in Swimmers Early in the Swimming Season? - Sengoku, Y., Nakamura, K., Takeda, T., Nabekura, Y., Tsuhabimoto, S.

The Effects of Rubber Swimsuits on Swimmers Using a Lactic Acid Curve Test - Shiraki, T., Wakayoshi, K., Hata, H., Yamamoto, T., Tomikawa, M.

Some Factors Limiting Energy Supply in 200m Front Crawl Swimming - Strumbelj, B., Usaj, A., Kapus, J., Rednairk, J.

Lactate Comparison Between 100m Freestyle and Tethered Swimming of Equal Duration - Thanopoulos, V., Rozzi, G., Platano, T.

Blood Lactate Concentration and Clearance in Elite Swimmers During Competition - Vescevile, J.D., Felenbrak, O., Wells G.D.

Determination and Validity of Critical Velocity in Front Crawl, Arm Stroke and Leg Kick as an Index of Endurance Performance in Competitive Swimmers - Wakayoshi, K., Shiraki, T., Ogita, F., Kitajima, M.

Differences In Methods Determining The Anaerobic Threshold Of Triathletes In The Water - Zoretic, D., Wertzbeifer, V., Leko, G.

Chapter 4. Training and Performance

Physiological Responses and Characteristic Features of 200m Continuous Swimming and 4x50m “Broken Swimming” with Different Rest Intervals - Beidaris, N., Botonis, P. and Platano, T.

General Indexes of Crawl Swimming Velocity of Junior Water Polo Players in a Match - Bratusa, F.Z., Perisic, S.M., Dopsaj, J.M.

Bench Press and Leg Press Strength and its Relationship with In-Water Force and Swimming Performance when Measured in-season in Male and Female Age-group Swimmers - Carl, D.L., Leslie, N., Dickerson, T., Griffin, B., Markssteiner, A.

Effect of Start Time Feedback on Swimming Start Performance. - de la Fuente, B. and Arellano, R.

Predictors of Performance in Pre-Pubertal and Pubertal Male and Female Swimmers – Douda, H.T., Touahkis, A.G., Georgiou, Ch., Gourgoulis, V. and Tokmakidis, S.P.

Changes of Competitive Performance, Training Load and Tethered Force During Tapering in Young Swimmers – Dreu, E., Touahkis, A.G., Gourgoulis, V., Thomaidis, S., Douda, H., Tokmakidis, S.P.

Perceived Exertion at Different Percents of The Critical Velocity in Front Crawl - Franken, M., Disenfether, F., de Souza Castro, F.A.

Talent Prognosis in Young Swimmers - Hohmann, A., Schack, T.

Determination of Lactate Threshold with Four Different Analysis Techniques for Pool Testing in Swimmers; Competitive Systematization in Age-group Swimming; An Evaluation of Performances, Maturational Considerations, and International Paradigms - Kojima, K. and Stager, J.M.

Effects of Reduced Knee-bend on 100 Butterfly Performance: A Case Study Using the Men’s Asian and Japanese Record Holder - Ide, T., Yoshihara, Y., Kawamoto, K., Taksie, S., Kawakami, T.

Effect of Subjective Effort on Stroke Timing in Breaststroke Swimming - Obba, M., Sato, S., Shimoyama, Y., Sato, D.

A Markov Chain Model of Elite Water Polo Player Competition - Pfiffer, M., Hohmann, A., Siegel, A., Böbllein, S.

Throwing Accuracy of Water Polo Players of Different Training Age and Fitness Levels in a Static Position and after Previous Swimming - Platano, T. and Botonis, P.

The Effect of Cognition-based Technique Training on Stroke Length in Age-group Swimmers - Schmidt, A.C., Ungerechts, B.E., Buis, W.J. & Schack, T.

Assessing Mental Workload at Maximal Intensity in Swimming Using the NASA-TLX Questionnaire - Schnitzler, C., Seifert, L., Hollett, D.

Does the Y-Intercept of a Regression Line in the Critical Velocity Concept Represent the Index for Evaluating Anaerobic Capacity? – Shimoyama, Y., Okiwa, K., Baba, Y., Sato, D.

Identification of a Bias in the Natural Progression of Swim Performance - Stager, J.M.; Brummer, C.L., Tanner, D.A.

Tethered Swimming as an Evaluation Tool of Single Arm-Stroke Force - Touahkis, A.G., Gourgoulis, V., Tokmakidis, S.P.

Blood Lactate Responses During Interval Training Corresponding to Critical Velocity in Age-Group Female Swimmers – Tzial, G., Touahkis, A.G., Michailidou, D., Gourgoulis, V., Douda, H., Tokmakidis, S.P.

258

259

262

267

272

274

276

278

281

283

286

298

294

296

299
Chapter 5. Education, Advice and Biofeedback

Quantitative Data Supplements Qualitative Evaluations of Butterfly Swimming - Becker, T.J., Havriluk, R. 314

The Effect of Restricting the Visual Perceptual Task in the Temporal Organization of Crawl Swimming: Surface Characteristics - Brito, C.A.F., Belvis, W.C., Oliveira, M. 2 317

Analyses of Instruction for Breath Control While Swimming the Breaststroke - Hará, H., Yoshioka, A., Matsunaga, N., Nose, Y., Watanabe, R., Shibata, Y., Nomura, S. 319

Performance Level Differences in Swimming: Relative Contributions of Strength and Technique - Havriluk, R. 321

Evaluation of Kinaesthetic Differentiation Abilities in Male and Female Swimmers - Invernizzi, P.L., Longo, S., Scaroni, R., Michielon, G. 324

Swimming in Eyesight Deprivation: Relationships with Sensory-Perception, Coordination and laterality - Invernizzi, P.L., Longo, S., Tudini, F., Scaroni, R. 326

Progression in Teaching Beginning Swimming: Rank Order by Degree of Difficulty - Junge, M., Blixt, T., Stallman, R.K., 329

The Construct Validity of a Traditional 25m Test of Swimming Competence - Junge, M., Blixt, T., Stallman, R.K. 331

Using a Scalogram to Identify an Appropriate Instructional Order for Swimming Items - Langendorfer, S.J., Chaya, J.A. 333

The Effect of a Target Sound Made by a Model Swimmer's Dolphin Kick Movement on Another Swimmer's Dolphin Kick Performance - Shimizu, H., Ikibikarua, H., Tsukakimoto, S., Takagi, H. 341

Tendencies in Natural Selection of High Level Young Swimmers - Timakova T.S., Khvachnikova M.V. 343

The Cognitive Interplay Between Sensory and Biomechanical Features While Executing Flip Turns Wearing Different Swim Suits - Vieluf, S., Ungerechts, B.E., Toussaint, H.M., Lex, H. 1, Schack, T. 346

The Role of Verbal Information about Sensory Experience from Movement Apparatus in the Process of Swimming Economization - Zaton, K. 349

Chapter 6. Medicine and Water Safety

Crucial Findings from the 4W Model of Drowning for Practical and Teaching Applications - Avramidis, S., McKenna, J., Long, J., Butterly, R., Llewellyn, J.D. 353

Swimming, Cycling, Running and Cardiovascular Health - Bagheri, A.B., Mobedhi, H.D., Azizi, M.H., Saiiari, A.R. 357

Analysis of Aerobic/Aerobic Performance in Functionally Disabled Swimmers: Low Classes vs High Classes - De Aymerich, J., Benavent, J., Tella, V., Colado, J.C., Gonzalez, L.M., Garcia-Masó, X. 2, Madera, J. 359

Athletic Rehabilitation of a Platform Diver for Return to Competition after a Shoulder Dislocation - Fujiwara, O., Kondo, Y., Tachikawa, K., Jigami, H., Hirose, K., Matsuura, H. 362

Real and Perceived Swimming Competency, Risk Estimation, and Preventing Drowning among New Zealand Youth - Morán, K. 368

Keeping the Safety Messages Simple: The International Task Force on Open-Water Recreational Drowning Prevention - Quan, L., Bennett, E., Morán, K. (co-chairs) 371

Swimming Ability, Perceived Competence and Perceived Risk among Young Adults - Stalling, R.K., Dahl D.I, Morán, K., Kjendlie, P. 377

A Conceptual Paper on the Benefits of a Non-Governmental Search and Rescue Organization - Wellington, M., de Wet, T. 384

Author Index

The Gliding Phase in Swimming: The Effect of Water Depth

1 University of Beira Interior, Covilhã, Portugal
2 Research Centre in Sports, Health and Human Development, Vila Real, Portugal
3 Polytechnic Institute of Bragança, Bragança, Portugal
4 IIT Kharagpur, Mumbai, India
5 University of Porto, Faculty of Sport, Porto, Portugal
6 Research Centre of Education, Innovation and Intervention in Sports, Porto, Portugal
7 University of Savoie, Chambery, France
8 University of Trás-os-Montes and Alto Douro, Vila Real, Portugal

The aim of this study was to analyse the effect of depth on drag during the underwater gliding. CFD simulations were applied to the flow around a 3D model of a male adult swimmer in a prone gliding position with the arms extended at the front. The domain to perform the simulations was created with 3.0 m depth, 3.0 m width and 11.0 m length.

The drag coefficient and the hydrodynamic drag force were computed, performing this underwater gliding at higher depths. Thus, using computational fluid dynamics methodology one can compute the hydrodynamic drag when gliding at different water depths (Bixler et al., 2007). Additionally, one can also observe some elite swimmers (The Beijing Bubble Building, “The Ice Cube”), with its 3.0 m depth, is a good example. Additionally, one can also observe some elite swimmers performing this underwater gliding at higher depths. Thus, using computational fluid dynamics methodology one can compute the hydrodynamic drag when gliding at different water depths (Bixler et al., 2007).

Aiming to achieve higher performances, swimmers should take full advantage of each component of swimming race to stand out in swimming competitions. During starts and turns, the gliding phase represents a determinant race component. During the crucial gliding phase, swimmers must minimize the hydrodynamic drag force resisting forward motion. The position adopted by the swimmers under the water represents an important concern and seems to determine the success of the start (Vilas-Boas et al., 2000). Another interesting and less studied issue is related to the ideal depth to perform this underwater gliding. Vennel et al. (2006) showed that to avoid significant wave drag, a swimmer must be deeper than 1.8 chest depths and 2.8 chest depths below the surface for gliding velocities of 0.90 m/s and 2.0 m/s, respectively, which corresponds to water depths of 0.45 m and 0.70 m, respectively, for a swimmer with 0.25 m of chest depth. Lyttle et al. (1999) also showed that there is no significant wave drag when a typical adult swimmer is at least 0.60 m under the water surface. In both studies, at water depths higher than these values, hydrodynamic drag was almost constant, depending only on viscous and form drag. However, one can notice that new swimming pools attempted to incorporate some key elements that characterize a “fast swimming pool”, as the Beijing 2008 swimming pool (The Beijing Bubble Building, “The Ice Cube”), with its 3.0 m depth, is a good example. Additionally, one can also observe some elite swimmers performing this underwater gliding at higher depths. Thus, using computational fluid dynamics methodology one can compute the hydrodynamic drag when gliding at different water depths (Bixler et al., 2007).

Hence, the aim of this study was to analyse the effect of depth on drag during the underwater gliding in a swimming pool of 3.0 m depth, using computational fluid dynamics.

Key words: CFD, Hydrodynamics, Simulations, Human model

INTRODUCTION

Aiming to achieve higher performances, swimmers should take full advantage of each component of swimming race to stand out in swimming competitions. During starts and turns, the gliding phase represents a determinant race component. During the crucial gliding phase, swimmers must minimize the hydrodynamic drag force resisting forward motion. The position adopted by the swimmers under the water represents an important concern and seems to determine the success of the start (Vilas-Boas et al., 2000). Another interesting and less studied issue is related to the ideal depth to perform this underwater gliding. Vennel et al. (2006) showed that to avoid significant wave drag, a swimmer must be deeper than 1.8 chest depths and 2.8 chest depths below the surface for gliding velocities of 0.90 m/s and 2.0 m/s, respectively, which corresponds to water depths of 0.45 m and 0.70 m, respectively, for a swimmer with 0.25 m of chest depth. Lyttle et al. (1999) also showed that there is no significant wave drag when a typical adult swimmer is at least 0.60 m under the water surface. In both studies, at water depths higher than these values, hydrodynamic drag was almost constant, depending only on viscous and form drag. However, one can notice that new swimming pools attempted to incorporate some key elements that characterize a “fast swimming pool”, as the Beijing 2008 swimming pool (The Beijing Bubble Building, “The Ice Cube”), with its 3.0 m depth, is a good example. Additionally, one can also observe some elite swimmers performing this underwater gliding at higher depths. Thus, using computational fluid dynamics methodology one can compute the hydrodynamic drag when gliding at different water depths (Bixler et al., 2007).

Hence, the aim of this study was to analyse the effect of depth on drag during the underwater gliding in a swimming pool of 3.0 m depth, using computational fluid dynamics.
METHODOLOGY
To obtain the geometry of a male human body, a model was created through computer tomography scans techniques (Marinho et al., 2010). The surfaces of the swimmer were then developed using ANSYS-FLUENT 6.3 pre-processor GAMBIT (Ansys Inc.®, Canonsburg, USA). The entire computational domain was volume meshed and solved through FLUENT solver.

The three-dimensional computational domain representing a part of swimming pool was about 3.0 m in depth, 3.0 m wide and 11.0 m in length. The entire computational domain consisted of 900 millions cells of hybrid mesh composed of prisms and pyramids.

Computational fluid dynamics simulations were carried out to simulate the flow around a three-dimensional model of a male adult swimmer in a prone gliding position with the arms extended at the front (Marinho et al., 2009). General Moving Object (GMO) model was used to model the body as the moving object. During the gliding, the swimmer model’s horizontal axis line running lengthwise was placed at different water depths viz., (i) 0.20 m (just under the surface), (ii) 0.50 m, (iii) 1.0 m, (iv) 1.50 m (middle of the pool), (v) 2.0 m, (vi) 2.50 m and, (vii) 2.80 m (bottom of the pool), respectively. The drag coefficient and the hydrodynamic drag force were computed using a steady flow velocity of 2.5 m/s for the different depths in each case.

RESULTS
Table 1 presents the drag coefficient and the drag force values when gliding at a water depth of 0.20 m, 0.50 m, 1.0 m, 1.50 m, 2.0 m, 2.50 m and 2.80 m. These values were computed at the time of 2 seconds when the swimmer was approximately at the middle of the computational pool.

It was observed that, both drag coefficient and drag force values fall with increase in depth of swimming tank, which swimmer model is chosen for simulation of gliding.

Table 1. Drag coefficient and drag force values for different water depths during gliding at the time of 2 seconds.

<table>
<thead>
<tr>
<th>Water depths (m)</th>
<th>Drag coefficient</th>
<th>Drag force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.67</td>
<td>100.20</td>
</tr>
<tr>
<td>0.50</td>
<td>0.62</td>
<td>92.30</td>
</tr>
<tr>
<td>1.00</td>
<td>0.53</td>
<td>80.50</td>
</tr>
<tr>
<td>1.50</td>
<td>0.44</td>
<td>65.40</td>
</tr>
<tr>
<td>2.00</td>
<td>0.36</td>
<td>53.40</td>
</tr>
<tr>
<td>2.50</td>
<td>0.30</td>
<td>44.70</td>
</tr>
<tr>
<td>2.80</td>
<td>0.28</td>
<td>42.00</td>
</tr>
</tbody>
</table>

DISCUSSION
The aim of this study was to analyse the effect of depth on drag during the underwater gliding, using computational fluid dynamics. It was noticed that hydrodynamic drag decreased with depth increase, presenting the lowest hydrodynamic drag values near the bottom of the computational swimming pool (water depth of 2.80 m).

Computational fluid dynamics methodology has been shown to be a reliable tool to examine the water flow around a submerged human body model (Bixler et al., 2007). Thus, an attempt was performed to analyse the hydrodynamic drag during the underwater gliding, simulating a swimming pool with 3.0 m depth and to verify if drag values remained constant at depths higher than a critical point, beyond which wave drag seems to be almost null (Lyttle et al., 1999; Vennel et al., 2006).

The water depth seems to have a positive effect on reducing hydrodynamic drag during the gliding. Moreover, gliding near the bottom of the pool also presented lower drag values compared to gliding at a water depth, for instance, in the middle of the swimming pool. This finding could suggest that the positive effects of water depth are more powerful than the possible negative hydrodynamic effects of turbulence near the bottom of the pool, expected when the simulations are not carried-out with a moving model. In fact, one of the innovations of this study was the possibility to carry-out the simulations and the drag analysis with a moving human body, as performed by Lecrivain et al. (2008) in the analysis of the upper arm propulsion.

The values found in this study, concerning hydrodynamic drag, were very similar to others presented in CFD studies (e.g., Bixler et al., 2007; Marinho et al., 2009), using similar velocities and similar water depths. Nevertheless, in opposition to what occurred in the studies of Lyttle et al. (1999) and Vennel et al. (2006), hydrodynamic drag decreased with depth, in the entire range of depths computed in FLUENT 6.3 (0.20 m to 2.80 m). These differences signify an interesting aspect for future investigation and to further analysis with computational fluid dynamics simulations. However, one can attribute these differences between the experimental analysis and computational fluid dynamics could be one of the reasons not to find good match of data. Indeed, although significant improvements on computational fluid dynamics simulations, it raises the question, whereas this methodology truly represents the real swimming conditions. In this paper, a significant effort was performed to diminish this difference, using a moving human body. We believe this approach could lead to obtain more accurate results. In the future, it should be also attempted to perform the same analysis with the swimmer kicking (underwater dolphin kicking), since the time when the swimmer is passively gliding is very short comparing with the total underwater distance. Moreover, active drag can be significantly different from passive drag values (Kjendlie & Stallman, 2008), thus generalizing these data to the underwater dolphin kicking should be made with careful.

CONCLUSIONS
Reducing the drag experienced by swimmers during the glide of the wall can enhance start and turn performances. Therefore, a compromise between decreasing drag (by increasing swimmer's depthness from water surface) and gliding travel distance should be a main concern of swimmers and an important goal to be studied in future investigations. Although increasing depth position could contribute to decrease drag force, this reduction seems to be lower with depth, especially after 2.0 m depth, thus suggesting that possibly performing the underwater gliding (and the underwater dolphin kicking) more than 2.0 m depth could not be gainful for the swimmer.

REFERENCES
A Method to Estimate Active Drag over a Range of Swimming Velocities which may be used to Evaluate the Stroke Mechanics of the Swimmer

Mason, B.R. 1, Formosa, D.P. 1, Toussaint, H.M. 2

1 Australian Institute of Sport, Australia
2 Innosport, The Netherlands

This research project aimed to estimate values of active drag over a range of swimming velocities. The data required to do this was the passive drag values for the swimmer at various swim velocities, together with the active drag force value for the individual at their maximum swim velocity. The drag force is represented by an exponential equation \(F = a \cdot e^{bx} \), where \(a \) and \(b \) are constants for a particular swimmer. The constant \(a \) (passive) reflects the more innate characteristics of the individual swimmer and their suitability to aquatics motion. The constant \(a_{\text{active-passive}} \) (active-passive) reflects the efficiency of the swimmer’s technique. In both cases, the lower the constant’s value, the better suited the swimmer is to aquatics motion or to technical efficiency. The \(a_{\text{active-passive}} \) and the \(a \) provide an index to evaluate a swimmer’s capabilities.

Keywords: Biomechanics, swimming, active drag, passive drag, stroke mechanics

INTRODUCTION

A swimmer’s ability to swim faster is depended upon an increase of propulsive force, which exceeds the drag force presently acting on the swimmer’s motion. However, active drag increases exponentially with a progressive increase in the swimmer’s mean velocity. When the active drag and mean maximal propulsive force generated by the swimmer reach equilibrium, the swimmer attains their mean maximum swim velocity. However, at any constant swim velocity, mean active drag is equal in magnitude to the mean propulsive force exerted by the swimmer. Knowing the magnitude of the mean active drag opposing the forward motion provides information that may be used to evaluate the swimmer’s mean propulsive force.

Initially it was thought that tethered swimming would provide a reasonable measure of the swimmer’s propulsion. Researchers have discounted this theory (Mason et al, 2009a). The MAD system developed in the Netherlands provided a measure of active drag at different velocities (Toussaint et al, 2004). However, researchers have questioned whether the swimming actions using the MAD system represent swimming propulsive technique. The major challenge researchers faced was the ability to measure total propulsive force generated by the swimmer during the free swim phase. Therefore, methods were developed to estimate the swimmers’ mean propulsive force. The Velocity Perturbation Method provided a value for active drag, however only at the swimmer’s maximum velocity (Kolmogorov & Duplishcheva, 1992). Similarly, a method developed at the Australian Institute of Sport also identified the magnitude of active drag at maximum swim velocity (Formosa et al., 2009). Both these methods used to evaluate active drag were dependent upon the assumption that the swimmer applied equal power while swimming at their maximum velocity during the free swim and assisted/resisted conditions. Passive drag is measured at various velocities by towing the swimmer in a streamline position. Researchers have identified that the measurement of passive drag was highly correlated to that of active drag at the swimmer’s maximum velocity (Mason et al, 2009b). This high relationship between active and passive drag justified the procedures used in this present research project.

The aim of this study was to develop a method to estimate the active drag of the swimmer over a full range of swimming velocities. The method developed relied upon having mean passive drag measures of the swimmer over a range of velocities, as well as the mean active drag of the swimmer at the swimmer’s maximum swim velocity.