Ias Jornadas Nacionais de Genética e Biotecnologia
21 - 23 de Novembro de 2008

PROGRAMA E RESUMOS

Aula Magna, Universidade de Trás-os-Montes e Alto Douro, Vila Real

ADNGB - Alunos do Núcleo de Genética e Biotecnologia
Farnesoid X Receptor: Docking Model Validation

Hugo Froufe, Rui M.V. Abreu, Isabel C.F.R. Ferreira

'CIMO-ESAB, Inst. Politécnico de Bragança, Campus de Sta Apolónia, 5301-855 Bragança, Portugal | 'Centro de Genética e Biotecnologia-IBB, Univ. Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

Farnesoid X receptor (FXR) is a protein that was shown to be involved in controlling numerous metabolic pathways that include: maintaining bile acid, lipid and glucose homeostasis, preventing intestinal bacterial infection and modulating liver regeneration and tumorigenesis [1]. The different roles played by FXR highlight potential new opportunities for using FXR as a drug target for different diseases [2]. In this work we validate the use of FXR as a target for virtual docking simulation experiments.

We used the docking software Autodock 4 as it is acknowledged to be one of the most widely used in docking simulations [3]. The FXR 3-D structure used (PDB code: 1OSH) in this study is co-crystallized with Fexaramine, a known high affinity agonist. Before the docking experiment, Fexaramine was removed from the structure. A docking experiment was then performed using Fexaramine as ligand and the docking results showed that the predicted binding mode essentially matches the Fexaramine present in the experimental FXR 3-D structure, with a RMSD (Root Mean Standard Deviation) of less than 1 Å on average, a cluster of 49 in 50 runs and a minimum binding energy of -14.39 kcal/mol. We also evaluate the FXR against other known agonists. These results validate the use of the FXR 3D structure as a good target for virtual docking experiments with other potential ligands.