SYNTHESIS OF POLYHYDROXY-2,3-DIARYLXANTHONES WITH POTENCIAL ANTIOXIDANT ACTIVITY

Clementina M. M. Santosa,b, Artur M. S. Silvab, Josi A. S. Cavaleirob,

aDepartment of Agro-Industries, Escola Superior Agraria de Bragança, 5301-855 Bragança, Portugal; clems@dq.ua.pt
bDepartment of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; arturs@dq.ua.pt

Xanthones are a well-studied class of heterocyclic compounds \cite{1} and over the years these substances have been extensively studied due to their biological properties. Both natural and synthetic derivatives have shown important antimicrobial, anti-tumour, anti-inflammatory as well as antioxidant activities \cite{2}. Several structure/activity studies of polyphenolic compounds revealed that the presence of hydroxyl substituents in certain positions of their skeleton is of great importance for a high antioxidant activity \cite{3}.

Taking this knowledge into consideration, we report the synthesis of new polyhydroxy-2,3-diaryl xanthones, starting from the 3-bromo-2-methylchromone 1. Aldol condensation of 1 with benzaldehydes leads to the formation of 3-bromo-2-styrylchromones 2 followed of Heck reaction with styrenes to give the 2,3-aryl xanthones 3 \cite{4}. The final step consists in the cleavage of protective groups to obtain the desired polyhydroxy-2,3-diaryl xanthones 4. The experimental procedures and the characterization of the new compounds will be presented and discussed.

\begin{center}
\includegraphics[width=\textwidth]{xanthone_synth.png}
\end{center}

A: Benzaldehydes, MeOH, r.t., 48 h.
B: Et\textsubscript{3}N, Pd[PPh\textsubscript{3}]\textsubscript{4}, PPh\textsubscript{3}, NMP, styrenes
C: BBr\textsubscript{3}, CH\textsubscript{2}Cl\textsubscript{2}, -78°C

R1 = H, O\textsubscript{Bu} \quad R4 = H, OH
R2, R3 = H, OCH\textsubscript{3} \quad R5, R6 = H, OH

247
Acknowledgements: Thanks are due to the University of Aveiro, FCT and FEDER for funding the Organic Chemistry Research Unit and the project POCI/QUI/58835/2004. One of us (C.M.M. Santos) is also grateful to PRODEP 5.3 for financial support.

SYNTHESIS OF POLYHYDROXY-2,3-DIARYLXANTHONES WITH POTENTIAL ANTIOXIDANT ACTIVITY
Clementina M. M. Santos,a,b ARTUR M. S. SILVA,b José A. S. Cavaleirob

a Department of Agro-Industries, Escola Superior Agrária de Bragança, 5301-855 Bragança, Portugal
b Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

1st Edition - 2003

INTRODUCTION

Xanthones are a well-studied class of heterocyclic compounds (1) and over the years these substances have been extensively studied due to their biological properties. Both natural and synthetic derivatives have shown important anti-microbial, anti-tumour, anti-inflammatory as well as antioxidant activities (2). Several structure/activity studies of polyphenolic compounds revealed that the presence of hydroxyl substituents in certain positions of their skeleton is of great importance for a high antioxidant activity (3).

Taking this knowledge into consideration, we report the synthesis of new polyhydroxy-2,3-
diarylxanthones, starting from the 3-bromo-2-methylchromone I. Aldol condensation of I with benzaldehydes leads to the formation of 3-bromo-2-styrylchromones 2 followed by Heck reaction with styrenes to give the 2,3-diarylxanthenes 3 (4). The final step consists in the cleavage of protective groups to obtain the desired polyhydroxy-2,3-diarylxanthones 4.

REACCIÓINAL SCHEME

The synthesis of polyhydroxy-2,3-diarylxanthones (4) involves also two steps:
A) Heck reaction of 3-bromo-2-styrylchromone 2 with styrenes
B) Cleavage of the protective groups

GENERAL PROCEDURE

1. PREPARATION OF 3-BROMO-2-METHYLCHROMONE (I)

The preparation of 3-bromo-2-methylchromone (I) involves 3 steps:
A) Acetylation of 2-hydroxyacetophenone
B) Transposition of the acetyl group
C) Bromination and cyclization

2. SYNTHESIS OF 3-BROMO-2-STYRYLCHROMONES (2)

The hydroxyl group of 4-hydroxybenzaldehyde must be protected; in this case, we used benzyl chloride, K2CO3, DMF.

REFERENCES

ACKNOWLEDGEMENTS

Thanks are due to the University of Aveiro FCT and FEDER for funding the Organic Chemistry Research Unit and the project POCI/QUI/59824/2004. One of us (C.M.M. Santos) is also grateful to PRODEP 5.3 for financial support.