Revista Portuguesa de Farmácia

Edição da Sociedade Portuguesa de Ciências Farmacêuticas

1.º Encontro Nacional de Química Terapêutica
1st National Meeting on Medicinal Chemistry

13-15 Novembro '08
PORTO, PORTUGAL

LIVRO DE RESUMOS
BOOK OF ABSTRACTS
NOVEL 2-STYRYLCHROMONES WITH HIGH ANTI-INFLAMMATORY POTENTIAL THROUGH PREVENTION OF LTB₄ PRODUCTION BY HUMAN LEUKOCYTES, INHIBITION OF COX-1 ACTIVITY AND SCAVENGING OF ROS AND RNS


*REQUIMTE, Departamento de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Anibal Cunha, 164, 4099-030 Porto, Portugal
ϕ Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
*e-mail: ana.gomes@ff.up.pt

Abstract

2-Styrylchromones (2-SC) are a chemical family of heterocyclic compounds, vinyllogues of flavones (2-phenylchromones), whose occurrence in nature has been reported. Several natural and synthetic chromones have demonstrated to possess biological effects of potential therapeutic applications. However, the anti-inflammatory potential of 2-SC has not been explored so far. Our aim was to evaluate the putative anti-inflammatory properties of several synthetic 2-SC (Fig. 1) by studying their influence on different mechanisms involved in the inflammatory process: the over-generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and the 5-lipoxygenase (5-LOX) and cyclooxygenase 1 and 2 (COX-1 and COX-2) pathways of the arachidonic acid metabolism.

Some of the studied 2-SC proved to be extremely efficient scavengers of the different ROS and RNS, showing, in some cases, IC₅₀ values under 1 μM. The hydroxylamine pattern of 2-SC, especially in the B-ring but also in the A ring, modulates the activity of these compounds, the 3',4'-catechol derivatives being the most effective scavengers. The styryl pattern also contributes to their outstanding antioxidant activity.

Some of the tested 2-SC were able to inhibit both COX-1 activity and leukotriene B₄ production which makes them dual inhibitors of the COX and 5-LOX pathways. The most effective compounds were those having structural moieties with proved antioxidant activity (3',4'-catechol and 4'-phenol substituted B-rings). The dual inhibitors may exhibit anti-inflammatory activity with a wider spectrum than that of classical non-steroidal anti-inflammatory drugs (NSAIDs) by inhibiting 5-LOX product-mediated inflammatory reactions, towards which NSAIDs are ineffective.

In conclusion, in the present study, several of the tested 2-SC were shown to be efficient scavengers or ROS and RNS, to prevent LTB₄ production by human leukocytes and to inhibit COX-1 activity. All together, these compounds may become a new therapeutic option in the treatment of inflammatory processes.

Acknowledgments

The authors acknowledge FCT and FEDER financial support for the project POCI/QUI/59284/2004. Ana Gomes acknowledges FCT and FSE her PhD grant (SFRH/BD/23299/2005).