BOOK OF ABSTRACTS

September 5 - 8, 2010 · Bologna/Italy

ESBES
8th European Symposium on Biochemical Engineering Science

ISPPP
30th International Symposium on the Separation of Proteins, Peptides and Polynucleotides

ISB
3rd International Symposium on Biothermodynamics

www.dechema.de/BEST2010
Comparing Approaches for Drug-Like Molecules Solubility Calculations

Fátima L. Mota1; António J. Queimada1; Simão P. Pinho2; Eugénia A. Macedo1

1LSRE – Laboratory of Separation and Reaction Engineering, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

2LSRE – Laboratory of Separation and Reaction Engineering, Departamento de Tecnologia Química e Biológica, Instituto Politécnico de Bragança, Campus de Santa Apolónia,
Apartado 1134, 5301-857 Bragança, Portugal

Solubility has been recognized as one of the most important properties for designing separation and purification processes of complex molecules, such as active pharmaceutical ingredients. Experimental solubility data are usually needed for performing such design operations. However, frequently data are unavailable due to reduced amounts of sample, time limitations, or inherent complexities with experimental measurements. In such cases, thermodynamic models can be the more theoretically sound tools to generate solubility estimates.

In this work, the group-contribution method UNIFAC, and the NRTL-SAC activity coefficient model, are used to correlate and predict solubility in pure and mixed solvents of a set of representative drug-like molecules such as benzoic, salicylic and acetylsalicylic acids, ibuprofen, hydroquinone, estril, estradiol and resveratrol. Generally, UNIFAC and NRTL-SAC models are able to represent the data, with NRTL-SAC being better for pure solvent solubilities. Solubility dependence with temperature and solvent composition were also taken into account.

Whenever possible, the reference solvent approach was also applied, and the results were generally improved with any of the models. The average percent absolute deviations obtained for the representation of solubility data in pure solvents are very satisfactory, but for mixed solvents higher deviations are possible to find.
Comparing Approaches for Drug-Like Molecules Solubility Calculations

Fátima L. Mota(1), António J. Queimada(1), Simão P. Pinho(2), Eugénia A. Macedo(1)

1. Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2. Laboratory of Separation and Reaction Engineering, Departamento de Tecnologia Química e Biológica, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1134, 5301-857 Bragança, Portugal

Introduction

- Solubility: one of the most important properties for designing separation and purification processes of complex molecules, such as active pharmaceutical ingredients.
- Solubility data are frequently unavailable. So, even if experimental data are still fundamental, predictive thermodynamic tools must be implemented;
- Solubilities of benzoic, salicylic and acetylsalicylic acids, ibuprofen, hydroquinone, estradiol, estradiol and resveratrol were studied in a variety of pure and mixed solvents using several models.

Group-contribution methods[2,3]

- Besides to UNIFAC, the A-UNIFAC model is applied. It takes into account association effects; an association activity coefficient term is added to the original equation which is a function of the fraction of non-bonded sites.

Modelling

Results

AAD’s for solubility prediction in pure solvents at 298.15 K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A-UNIFAC</th>
<th>A-UNIFAC + RSA</th>
<th>UNIFAC</th>
<th>UNIFAC + RSA</th>
<th>NRTL-SAC</th>
<th>NRTL-SAC + RSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicylic acid</td>
<td>75.1</td>
<td>38.7</td>
<td>18.9</td>
<td>18.9</td>
<td>18.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>24.0</td>
<td>19.1</td>
<td>29.7</td>
<td>29.7</td>
<td>27.9</td>
<td>14.0</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>72.3</td>
<td>29.6</td>
<td>78.3</td>
<td>30.2</td>
<td>36.9</td>
<td>37.0</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>44.8</td>
<td>47.3</td>
<td>36.7</td>
<td>40.9</td>
<td>71.0</td>
<td>57.2</td>
</tr>
<tr>
<td>Estradiol</td>
<td>+150</td>
<td>65.9</td>
<td>28.9</td>
<td>----</td>
<td>+150</td>
<td>----</td>
</tr>
<tr>
<td>Hydroquinone</td>
<td>91.1</td>
<td>----</td>
<td>40.5</td>
<td>----</td>
<td>35.3</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65.4</td>
<td>40.1</td>
<td>42.5</td>
<td>30.7</td>
</tr>
</tbody>
</table>

Conclusions

- Generally, UNIFAC and NRTL-SAC models are able to represent the data in pure solvents. To apply the A-UNIFAC more effectively some work is still needed to estimate representative parameters.
- For the solubility dependence with temperature, NRTL-SAC model is slightly better. For aqueous systems, A-UNIFAC is better than UNIFAC proving the need of taking into account association.
- In general, these models fail in the estimation of these compounds solubilities in alcohol/water mixed solvents. However, A-UNIFAC showed better performances.
- Whenever RSA was applied, the results were generally improved with any of the models, excepting some mixed solvent systems where limitations were found.