CHOLESTEROL
CHOLESTEROL

From Chemistry and Biophysics to the Clinic

Edited by

Anna N. Bukiya
Professor, Department of Pharmacology, Addiction Science and Toxicology, College of Medicine,
The University of Tennessee Health Science Center, Memphis, TN, United States

Alex M. Dopico
Van Vleet Chair of Excellence, Department of Pharmacology, Addiction Science and Toxicology, College of Medicine,
The University of Tennessee Health Science Center, Memphis, TN, United States
Contents

Contributors xiii
Preface xvii
Afterword xix

SECTION 1
Cholesterol chemistry and cell function

1. Cholesterol chemistry and laboratory synthesis
Hélio M.T. Albuquerque, Clementina M.M. Santos, and Artur M.S. Silva

Introduction 4
Cholesterol structural characterization 6
Cholesterol laboratory synthesis 9
Concluding remarks 21
References 22

2. Molecular evolution of cholesterol and other higher sterols in relation to membrane structure
Ole G. Mouritsen

Introduction: The overlooked lipids 25
Key features of the cholesterol molecule 27
Evolution and streamlining of a molecule 27
Phase equilibria in lipid membranes 29
Cholesterol and lipid membrane phase equilibria:
The liquid-ordered phase 30
Cholesterol, transverse membrane order, permeability, and mechanics 32
Cholesterol and lateral membrane organization 33
Other higher sterols: Universality in sterol function 35
A case study: Cholesterol, lateral membrane structure, and the functioning of Na⁺/K⁺-ATPase 36

Cholesterol and membrane evolution 36
References 38

3. Role of cholesterol in maintaining the physical properties of the plasma membrane
Witold K. Subczynski, Marta Pasenkiewicz-Gierula, Justyna Widomska, and Natalia Stein

Introduction 42
Phase diagram for cholesterol/phospholipid mixtures 43
Basic membrane physical properties and how cholesterol regulates them 45
Lateral organization of membranes: Effect of cholesterol 57
New information from the saturation recovery electron paramagnetic resonance stretched exponential function approach 59
Concluding remarks 61
Summary 64
References 64

4. The fundamental interaction of cholesterol with lipid membranes:
The umbrella model
Juyang Huang

Introduction 73
Maximum solubility of cholesterol in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) bilayers 74
The umbrella model 77
Monte Carlo simulation of chemical potential of cholesterol using multibody interactions 81
A family of small headgroup molecules: Sterols, ceramides, and diacylglycerols 85
Molecular dynamics (MD) simulation of the umbrella effect 87
Measurement of the chemical potential of cholesterol in PC bilayers 90
Concluding remarks 95
References 96
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Model peptides and cholesterol</td>
<td>István P. Sugár and Parkson Lee-Gau Chong</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>On the energy and entropy parameters of the free energy of the membrane</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Introduction: Membrane heterogeneity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphingolipids and cholesterol: Biological impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphingolipids and cholesterol: Membrane biophysics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol and ceramide in fluid membranes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusions and future perspectives</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>7.</td>
<td>Cholesterol-recognition amino acid consensus motifs in transmembrane</td>
<td>Fodil Azzaz, Henri Chahinian, Nouara Yahi, Coralie Di Scala, Carlos J. Baier, Francisco J. Barrantes, and Jacques Fantini</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>proteins: Comparative analysis of in silico studies and structural data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol: Bifacial structure, multifaceted functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol footprint on a membrane protein:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starting the investigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARC and CRAC algorithms: Basic principles at work</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol-binding motifs in 3D: What structural studies reveal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moving to the 3rd dimension</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>8.</td>
<td>Effects of cholesterol on the GPCR AT1 receptor and its interplay with AT1 antagonists</td>
<td>Sofia Kiriakidi, Zoe Cournia, and Thomas Mavromoustakos</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental results and their discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol influence on the physicochemical properties of the cell membrane in the presence of AT1R and sartans</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Principles of cholesterol regulation of ion channels</td>
<td>Qiu-Xing Jiang and Irena Levitan</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lipids as structural components and functional regulators of membrane proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A thermodynamic consideration of lipid-binding sites on ion channels and their generic effects on the gating of the channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol-binding sites on ion channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functional impact of cholesterol on the activities of ion channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical limitations and potential solutions for further developments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td></td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td>10.</td>
<td>Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes</td>
<td>Francisco J. Barrantes</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The elusive ideal probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol probes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indirect cholesterol probes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct imaging of intrinsic fluorescent cholesterol analogs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concluding remarks</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>11.</td>
<td>Cholesterol transport in blood, lipoproteins, and cholesterol metabolism</td>
<td>Mark T. McAuley and Amy E. Morgan</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lipoproteins an overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low-density lipoprotein cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-density lipoprotein cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>How does aging impact cholesterol metabolism?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obesity and aging: Two sides of the same coin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using mathematical modeling to explore cholesterol metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>242</td>
</tr>
</tbody>
</table>
12. Common laboratory research methods for detection and quantification of cholesterol
Anna N. Bukiya, Hanxuan Li, Steven Mysiewicz, and Wei Li

Introduction to cholesterol detection and quantification 259
The early era of cholesterol detection and quantification: Colorimetric approaches 262
MS-based approaches 264
Imaging-based approaches 270
Enzymatic methods 276
Summary and concluding remarks 279
References 280

13. Approaches for modifying cellular cholesterol levels and their application to mechanistic studies: Examples from the ion channel field
Avia Rosenhouse-Dantsker, Alexandria Slayden, and Anna N. Bukiya

Introduction 290
In vitro methods for modifying cholesterol levels in cell membranes 291
In vivo modification of cholesterol levels 303
Applications to mechanistic studies on the effect of cholesterol on ion channel targets 312
Outlook 319
References 320

SECTION 2
Cholesterol homeostasis and its disruption

14. Diet-induced hypercholesterolemia in small laboratory animal models
Tina Herfel

Introduction 343
Mouse models 344
Rat models 348
Hamsters 349
Guinea pigs 352
Rabbits 354
Additional diet considerations 356
Control diets 358
References 359

15. Nutrition and cholesterol metabolism
Ghada A. Soliman

Introduction 372
Cholesterol structure 373
Nutritional recommendations for maintaining healthy blood cholesterol levels 374
Dietary cholesterol intake 375
Saturated fat intake 377
Cholesterol functions 381
Digestion and absorption of cholesterol 381
Transport of cholesterol 382
Endogenous cholesterol synthesis 384
Blood cholesterol and atherosclerosis 385
Guinea pigs as a preclinical model 386
Advances in cholesterol research 387
Explanatory and predictive models approach 393
Conclusions 394
References 396

16. Cholesterol and early development
Isabella Ellinger and Waranya Chatuphonprasert

Introduction 404
The fetus and cholesterol 406
Steroid hormones in reproduction and early life 414
Extraembryonic structures, secondary yolk sac and placenta, and materno-fetal cholesterol transport 422
Maternal cholesterol levels in healthy pregnancies, maternal hyper- and hypocholesterolemia, and consequences for the fetus 426
Effect of selected medicines related to cholesterol metabolism on the fetal development 430
Summary 436
References 437

17. Clinical and biochemical diagnostic methods: What do blood lipid levels tell us?
Marshall B. Elam

Introduction 452
Use of conventional laboratory methods to measure lipoproteins by determining their cholesterol content 454
Beyond standard lipid profiles: Determination of atherogenic lipoproteins by advanced lipoprotein testing 454
Contents

Fasting versus nonfasting lipid measurements 458
Lipid and lipoprotein testing in laboratory animals 460
What do lipid/lipoprotein levels tell us? 460
References 462

18. Familial hypobetalipoproteinemia and abetalipoproteinemia
Francine K. Welty

Introduction 465
ApoB gene mutations causing familial hypobetalipoproteinemia 466
Familial hypobetalipoproteinemia (FHBL) and coronary heart disease (CHD) 468
FHBL and hepatic steatosis 468
FHBL and insulin sensitivity 469
FHBL, hepatic cirrhosis, and hepatocarcinoma 470
FHBL and psychiatric disease 470
Heterozygous FHBL and neurological manifestations 471
Proprotein convertase subtilisin kexin 9 gene (PCSK9) mutations 471
Familial combined hypolipidemia (FHBL2) 471
ANGPTL3 S17X 472
Abetalipoproteinemia (ABL) and homozygous hypobetalipoproteinemia (HHBL) 473
Diagnosis and management 473
Heterozygous FHBL 474
Pregnancy management 477
Conclusion 477
References 477

19. Critical illness and cholesterol levels
Zdenek Zadak

Introduction 481
Clinical implications of hypocholesterolemia 488
References 496

20. Familial hypercholesterolemia
Shifa Jebari-Benslaiman, Unai Galicia-Garcia, Asier Larrea-Sebal, Kepa B. Uribe, Cesar Martin, and Asier Benito-Vicente

Introduction 502
Genetic and molecular background of FH 502
Familial hypercholesterolemia diagnosis 507
Familial hypercholesterolemia treatments 509
Nutrition and familial hypercholesterolemia 513
Management of homozygous familial hypercholesterolemia 514
Familial hypercholesterolemia-related diseases 514
Familial hypercholesterolemia current status and future perspectives 516
References 517

21. Niemann-Pick type C disease (NPC)
Agnieszka Ługowska

Introduction 525
Clinical picture of NPC disease 527
Genetic background of NPC 528
Biochemical aspects of NPC1 and NPC2 proteins 532
Pathomechanisms underlying NPC disease 535
Diagnostics 538
Treatment 543
References 544

22. Rare monogenic disorders of cholesterol metabolism
Małgorzata Bednarska-Makaruk and Agnieszka Ługowska

Introduction 555
Monogenic hypercholesterolemia 555
Sterol storage diseases 569
Bile acid biosynthesis disorders 576
Hypocholesterolemia 583
References 598

23. Secondary (acquired) hypercholesterolemia
Arrigo F.G. Cicero and Ivan R. Cincione

Introduction 609
Causes of secondary hyperlipidemias and their treatment 610
Conclusions 616
References 616

24. Blood lipids and molecular pathways of atherogenesis
Ricardo Stein, Filipe Ferrari, and Vítor M. Martins

Introduction 624
Cholesterol metabolism 625
Pathophysiology of atherosclerosis 626
Contents

Low-density lipoprotein cholesterol and cardiovascular disease 626
Oxidized low-density lipoprotein cholesterol and cardiovascular disease 627
High-density lipoprotein cholesterol: Marker or risk factor? 630
Triglycerides and cardiovascular disease 631
Genetics and dyslipidemia 632
Conclusions 633
References 633

25. Lysosomal acid lipase: Roles in rare deficiency diseases, myeloid cell biology, innate immunity, and common neutral lipid diseases
Gregory A. Grabowski and Hong Du

Historical background: Lysosomal acid lipase (LAL) 640
Structure, properties, and biology of LAL 641
LAL roles in disease states 652
Molecular biology and genetics 657
LAL in diseases beyond the LALDs 662
References 664

26. Cholesterol and pathogens
Tatiana M. Clemente and Stacey D. Gilk

Introduction 676
The role of cholesterol-rich membrane microdomains in infectious diseases 676
Cholesterol recruitment to pathogen-containing vacuoles 681
Targeting cellular cholesterol metabolism 684
Systemic cholesterol levels and pathogens 687
Cholesterol-lowering agents as potential therapeutics in infectious diseases 690
Cholesterol and immune response 692
Summary 696
References 697

27. Involvement of cholesterol and β-amyloid in the initiation and progression of Alzheimer’s disease
Luis G. Aguayo, Jorge P. Roa, Carlos F. Burgos, and Juliana Gonzalez-Sanmiguel

Neurodegenerative diseases are a significant health problem: Alzheimer's disease (AD) 716
The amyloid cascade as a central cause for Alzheimer’s disease 718
Cellular domains important for the formation of Aβ and cholesterol 720
Interactions of Aβ with the neuronal membrane and the initiation of synaptic failure 723
Participation of membrane lipids in the initiation of Aβ-mediated neurotoxicity 725
How Aβ and cholesterol might lead to neurodegeneration 729
Cholesterol affects a number of membrane proteins that fine tune neuronal excitability 730
The ε4 isoform (ApoE4) factor in disease onset and progression 733
References 736

28. Cholesterol and alcohol
Andrew S. Bell, Emma M. O’Connell, and Falk W. Lohoff

Introduction 747
Alcohol pharmacology 748
Alcohol use disorder 749
Alcohol and cholesterol interactions 750
Alcohol and lipoproteins 751
Alcohol and PCSK9 753
Fetal alcohol spectrum disorders (FASDs) and cholesterol 755
Targeting lipids for treatment of alcohol-related diseases 757
Conclusion 760
References 760

SECTION 3
Pharmacological considerations and perspectives

29. Cholesterol stiffening of lipid membranes and drug interactions: Insights from neutron spin echo and deuterium NMR spectroscopy
Sudipta Gupta, Farhima T. Doole, Teshani Kumarage, Milka Doktorova, George Khelashvili, Rana Ashkar, and Michael F. Brown

Introduction 772
Neutron spin echo spectroscopy of lipid membranes 775
30. Cholesterol in drug delivery systems
DanRong Hu and ZhiYong Qian

Introduction 798
The common synthesis chemistry of modifying cholesterol into the polymers 799
Cholesterol in the form of drug delivery vehicles 801
Conclusion 817
References 817

31. Modification of vascular receptor pharmacology by cholesterol: From molecular determinants to impact on arterial function
Alex M. Dopico, Anna N. Bukiya, and Kelsey C. North

Introduction 826
Cholesterol modulation of vasoactive drug action in which the underlying pharmacodynamic process(es) is not fully determined 827
Cholesterol modulation of vasoactive drug action occurring at the cell membrane where the vasoactive drug receptor of interest is embedded 834
Cholesterol modulation of vasoactive drug action occurring at the vasoactive drug receptor protein itself 839
Conclusions and prospective 844
References 845

32. Clinical strategies for reducing cholesterol levels
Claude K. Lardinois and Samantha Karr

Introduction 854
Epidemiology 854
Major guidelines for lipid-lowering therapy in the United States 856
Pharmacologic treatment of lipids 864
Other lipid-lowering therapies 883
Nonprescription and dietary supplements 886
Patient education 890
Clinical pearls 890
Screening for lipid disorders 891
Summary 892
References 893

33. Medicinal chemistry and pharmacology of statins
Bob M. Moore, II and George A. Cook

Introduction 903
Medicinal chemistry of statins 905
Pharmacology 919
Future drugs and concluding remarks 922
References 922

34. Cyclodextrins as promising therapeutics against cholesterol overload
Florina Zakany, Tamas Kovacs, Lajos Szente, and Zoltan Varga

Introduction 929
Cyclodextrins in general 930
Cyclodextrins in the treatment of Niemann-Pick type C disease 934
Cyclodextrins with great potential in the treatment of neurodegenerative diseases 941
Cyclodextrins as promising therapeutics in atherosclerosis 947
Role of cyclodextrins in the treatment of kidney diseases 951
Role of cyclodextrins in the treatment of eye disorders 952
Potential effects of cyclodextrins against coronavirus 953
Concluding remarks 954
References 955

35. Hyperlipidemia and rheumatoid arthritis
Aliki I. Venetsanopoulou, Paraskevi V. Voulgari, and Alexandros A. Drosos

Introduction 970
Pathophysiologic mechanisms in rheumatoid arthritis (RA) 971
Articular and extra-articular manifestations of RA 972
Rheumatoid arthritis treatment 973
Comorbidities in RA 974
CVD: A major comorbidity in RA 974
CVD risk assessment in RA 975
CVD and atherosclerosis in RA 975
Lipid profile in RA patients 978
Mechanisms related to dyslipidemia in RA 979
Lipid concentration and inflammatory markers 979
Atherosclerosis and inflammation 979
Lipid metabolism and inflammation 980
The impact of cytokines on LDL 980
Lipid peroxidation 980
Altered HDL function and structure 981
Effects of antirheumatic therapy on serum lipid levels 981
Glucocorticoids (GCs) 981
DMARDs 982
Antitumor necrosis factor-alpha (anti-TNF-a) agents 983
Anti-interleukin-6 (IL-6) agents 984
Janus kinase inhibitors (JAK inhibitors) 984
Other agents 984
Mediterranean diet and RA 986
The role of exercise in RA 986
Conclusions 987
References 987

36. Management of hypercholesterolemia in individuals living with HIV/AIDS
Musaab Ahmed, Marium Ahmed, Dushyant Mital, and Mohamed H. Ahmed

Introduction 1000
Nucleoside reverse transcriptase inhibitors (NRTIs) 1002
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) 1002
Diabetes mellitus, metabolic syndrome and HIV 1004
Conclusion 1012
References 1013

Index 1021
CHAPTER 1

Cholesterol chemistry and laboratory synthesis

Hélio M.T. Albuquerquea, Clementina M.M. Santosa,b, and Artur M.S. Silvaa

aLAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal bCentro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal

Abbreviations

| Ac | acetyl |
| Acetylacetone |
ABSA	acetamidobenzenesulfonyl azide
BBN	9-borabicyclo[3.3.1]nonane
Bn	benzyl
Bu	butyl
COSY	correlation spectroscopy
DEPT	distortionless enhancement by polarization transfer
DMSO	dimethylsulfoxide
DMF	\textit{N},\textit{N}-dimethylformamide
DMAP	4-dimethylaminopyridine
Et	ethyl
HMBC	Heteronuclear Multiple Bond Correlation
HSQC	Heteronuclear Single Quantum Coherence
HMPA	hexamethylphosphoramide
IUPAC	International Union of Pure and Applied Chemistry
LDA	lithium diisopropylamide
Me	methyl
MMC	magnesium methyl carbonate
Ms	methanesulfonyl (often shortened to mesyl)
NMR	nuclear magnetic resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
\textit{p}	\textit{para}
PCC	pyridinium chlorochromate
Pd/C	palladium on carbon
Ph	phenyl
Py	pyridine
\textit{t}	\textit{tert}
TBSCI	\textit{tert}-butyldimethylsilyl chloride
Introduction

The name cholesterol derives from the Ancient Greek chole- (bile) and stereos (solid), followed by the chemical suffix of the functional group alcohol (-ol). Known also by the name cholesterin, cholesteryl alcohol, cholest-5-en-3β-ol, among others, this interesting natural molecule is a type of modified sterol belonging to the heterogeneous group of organic compounds known as lipids. With a bulky, rigid, and asymmetric structure, the cholesterol skeleton possesses four fused rings aligned from A to D, corresponding to three six-membered and one five-membered. As a whole, the four rings comprise the 1,2-cyclopentane perhydrophenanthrene system (Fig. 1A) (Nes, 2011). The rings are trans-connected and create an almost planar structure (Fig. 1C). The C-18 and C-19 methyl substituents are linked at C-10 and C-13, in relative cis configuration. Due to this structural prolife, the flat face of cholesterol is called the smooth α-face, and all substituents located on this face (in trans-conformation relative to C-19) are called α, while the substituents located on the rough β-face (presence of the two methyl substituents) are called β (in cis-conformation relative to C-19). The cholesterol moiety bears an additional polar 3β-hydroxy group and a C5=C6 double bond in B-ring (Róg, Pasenkiewicz-Gierula, Vattulainen, & Karttunen, 2009).

From a chemical point of view, the cholesterol molecule comprises four essential domains (Fig. 1B). The 3-hydroxy group of domain I constitutes not only an important active site for hydrogen bond interactions with several biological molecules but also a versatile functional group for derivatization. In domain II, the absence of methyl groups at C-4 and C-14 influences the planarity of the molecule, and the C5=C6 double bond is an attractive carbon center to several addition reactions. The natural (R)-configuration at C-20 observed in domain III determines the “right-handed” conformation of the side chain, while in domain IV, the conformation and length of the side chain are of high importance to intermolecular contacts (Cerqueira et al., 2016). The recommended name by the International Union of Pure and Applied Chemistry (IUPAC) for natural cholesterol is (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol. In its pure state, it is a white and crystalline powder.

![Figure 1](https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/cc66d1t&sid=DataCite)

FIG. 1 (A) Cholesterol tetracyclic nucleus with numbering of carbon atoms and rings labelling; (B) cholesterol four structural domains; (C) cholesterol crystal structure obtained from https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/cc66d1t&sid=DataCite.
that is odorless and tasteless, with a melting point of 148–149°C ("[cholesterol]", 2016; Barton, 1976).

Historically, the first identification of cholesterol is attributed to the French chemist François Poulletier de la Salle, who collected it as a crystalline component from human gallstones, in 1769. In 1815, the chemist Michel Eugène Chevreul isolated a crystalline compound of bile stones and named it cholesterine, which was renamed to cholesterol after knowing that the substance was a secondary alcohol. The correct chemical formula of C_{27}H_{45}O was only proposed in 1888 by F. Reinitze, and the first steric representations of the molecule were published by Heinrich Wieland and Adolf Windaus, their efforts leading the two scientists to win the Nobel Prize in Chemistry in 1927 and 1928, respectively (Nes, 2011). The steroid nucleus proposed by Wieland in his Nobel lecture presented some limitations. In 1932, however, his research group corrected it to the skeleton known nowadays (Vaupel, 2007). The research in steroids by Konrad Bloch and Feodor Lynen granted them the Nobel Prize in Physiology or Medicine in 1964, for their discoveries concerning the mechanism and regulation of cholesterol and fatty acid metabolism. Later in 1985, Michael S. Brown and Joseph L. Goldstein were also awarded with the Nobel Prize in Physiology or Medicine for their findings relating to the regulation mechanisms of cholesterol metabolism ("Feodor Lynen—Biographical, 2021," "Joseph L. Goldstein—Biographical, 2021," "Konrad Bloch—Biographical, 2021," "Michael S. Brown—Biographical, 2021").

Cholesterol is synthesized by all animal cells and is an essential structural component of animal cell membranes, where it contributes to the order of phospholipid chains and overall membrane (dis)order, integrity and heterogeneity. It is also used as a precursor for the biosynthesis of steroid hormones, bile acids and vitamin D (Cerqueira et al., 2016; Ercole, Whittaker, Quinn, & Davis, 2015; Róg et al., 2009). Although cholesterol has eight stereo-centers (Fig. 1B) that could rise to 256 stereoisomers, only the natural enantiomer with the (3R,20R)-configurations, is used as a membrane constituent (Xu et al., 2005).

As an amphiphilic molecule, having a hydrophobic hydrocarbon body and a hydrophilic hydroxy headgroup, cholesterol occupies a position at polar-nonpolar interfaces, as observed in cell membranes. The crystal structure of one form of cholesterol monohydrate published by Craven (1976) is based on a local pseudosymmetry arrangement of eight independent molecules in the triclinic cells, similar to the structure reported by Shieh, Hoard, and Nordman (1977) for anhydrous cholesterol crystals at room temperature (25°C). This molecular packing in the crystal structures is in some way in line to the tendency toward double layer structures with an end-for-end arrangement of nearly parallel molecules (Bernal, Crowfoot, & Fankuchen, 1940). On the other hand, cholesterol crystals at 37°C have a remarkably large unit cell containing 16 independent cholesterol molecules, and the transition preserves a closely obeyed pseudosymmetry present in the structure (Hsu & Nordman, 1983). Garti et al. studied phase transitions in cholesterol crystallized from various solvents, characterizing the effect of several solvents (e.g., carbon tetrachloride, acetonitrile, methanol, ethanol) and conditions of crystallization (Garti, Karpuj, & Sarig, 1980). Using differential thermal analysis, infrared spectroscopy and polarization microscopy, Barton had found that the phase transitions of cholesterol and other sterols subjected to heating and cooling in a range of −20°C to +150°C were dependent on the state of hydration and on the structure of the aliphatic side chain (Barton, 1976).

Below, we will review major milestones in characterization of cholesterol structure, cholesterol laboratory synthesis, and synthetic routes for production of enantiomeric cholesterol.
Cholesterol structural characterization

In 1973, Barry et al. used 1D 1H nuclear magnetic resonance (NMR) experiments to assign unequivocally the chemical shifts of the A and B ring protons of cholesterol using deuterated chloroform (CDCl$_3$) as solvent (Table 1) (Barry et al., 1973). Years later, Sawan et al. performed 1H NMR spectrum of cholesterol in pyridine-d_5 to accomplish the same goal (Sawan et al., 1979). Since then, several 1D and 2D NMR techniques have been used to complete ring proton assignment of various steroids by comparison with cholesterol data (Drew, Brisson, Morand, & Szabo, 1987; Zipser et al., 1998).

The latest NMR characterization of cholesterol dates back to 1998, and therefore, with more than 20 years passed by, we were encouraged to get our own 1D (1H, 13C, DEPT 90, and DEPT 135) and 2D NMR (HSQC, HMBC, COSY, and NOESY) data for the commercial cholesterol molecule, presenting the 1H and 13C NMR spectra as standard reference (Figs. 2 and 3). Our own interpretation of NMR data, based on the obtained 1D and 2D NMR, is listed in Tables 1 and 2, with unequivocal assignments of almost all carbons. Carbons C-7, C-11, C-13, C-15, C-16, and C-23 were assigned by analogy with previous reported data (*) (Table 2).

Although the assignment of 13C NMR chemical shifts in a molecule as large as cholesterol is a challenging task, some research groups dedicated their efforts to achieve this goal (ApSimon, Beierbeck, & Saunders, 1973; Mantsch & Smith, 1973; Reich, Jautelat, Messe,

TABLE 1 1H chemical shifts of cholesterol in several deuterated solvents.a

<table>
<thead>
<tr>
<th>H</th>
<th>CDCl$_3$b,c</th>
<th>Pyridine-d_5b,c</th>
<th>CDCl$_3$</th>
<th>CDCl$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α,1β</td>
<td>–</td>
<td>1.83</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2α</td>
<td>1.90</td>
<td>2.07</td>
<td>1.50</td>
<td>–</td>
</tr>
<tr>
<td>2β</td>
<td>1.58</td>
<td>1.80</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3α</td>
<td>3.47</td>
<td>3.82</td>
<td>3.39</td>
<td>3.47–3.57 (m)</td>
</tr>
<tr>
<td>4α,4β</td>
<td>2.3</td>
<td>2.60</td>
<td>2.13</td>
<td>2.17–2.33 (m)</td>
</tr>
<tr>
<td>6</td>
<td>5.30</td>
<td>5.41</td>
<td>5.34</td>
<td>5.34–5.36 (m)</td>
</tr>
<tr>
<td>7α,7β</td>
<td>2.05</td>
<td>2.03</td>
<td>1.95</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
</tr>
<tr>
<td>18-CH$_3$</td>
<td>0.68e</td>
<td>–</td>
<td>0.72</td>
<td>0.67 (s)</td>
</tr>
<tr>
<td>19-CH$_3$</td>
<td>1.02c</td>
<td>–</td>
<td>1.02</td>
<td>1.00 (s)</td>
</tr>
<tr>
<td>21-CH$_3$</td>
<td>–</td>
<td>–</td>
<td>0.94</td>
<td>0.91 (d, J = 6.5 Hz)</td>
</tr>
<tr>
<td>26-CH$_3$</td>
<td>–</td>
<td>–</td>
<td>0.87</td>
<td>0.862 (d, J = 6.6 Hz) or 0.858 (d, J = 6.6 Hz)</td>
</tr>
<tr>
<td>27-CH$_3$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*aChemical shifts in ppm relative to the internal standard, tetramethylsilane (TMS).

b Barry, Dobson, Savigart, Ford, and Williams (1973).

c Sawan, James, Gruenke, and Craig (1979).

e Our own data 1H NMR (300 MHz).
FIG. 2 ^1H NMR spectrum of cholesterol (CDCl$_3$, 300 MHz).

FIG. 3 ^{13}C NMR spectrum of cholesterol (CDCl$_3$, 75 MHz).

1. Cholesterol chemistry and cell function
TABLE 2 13C chemical shifts of cholesterol in several deuterated solvents.a

<table>
<thead>
<tr>
<th>C</th>
<th>CDCl$_3$b,c</th>
<th>CDCl$_3$c</th>
<th>CDCl$_3$d</th>
<th>CDCl$_3$e (DEPT 135, DEPT 90)</th>
<th>CCl$_4$b,c</th>
<th>Benzene-d$_6$b,c</th>
<th>Pyridine-d$_5$b,c</th>
<th>1,4-Dioxane-d$_4$b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.6</td>
<td>37.3</td>
<td>37.2</td>
<td>37.2 (CH$_2$)</td>
<td>38.6</td>
<td>38.0</td>
<td>38.4</td>
<td>38.2</td>
</tr>
<tr>
<td>2</td>
<td>32.8</td>
<td>31.6</td>
<td>31.6</td>
<td>31.7 (CH$_2$)</td>
<td>32.6</td>
<td>32.4</td>
<td>32.7</td>
<td>32.7</td>
</tr>
<tr>
<td>3</td>
<td>72.8</td>
<td>71.6</td>
<td>71.8</td>
<td>71.8 (CH)</td>
<td>72.1</td>
<td>71.9</td>
<td>71.6</td>
<td>71.8</td>
</tr>
<tr>
<td>4</td>
<td>43.5</td>
<td>42.2</td>
<td>42.3</td>
<td>42.3 (CH$_2$)</td>
<td>43.5</td>
<td>43.2</td>
<td>43.8</td>
<td>43.5</td>
</tr>
<tr>
<td>5</td>
<td>142.1</td>
<td>140.6</td>
<td>140.6</td>
<td>140.7</td>
<td>142.1</td>
<td>141.6</td>
<td>142.4</td>
<td>142.4</td>
</tr>
<tr>
<td>6</td>
<td>122.7</td>
<td>121.4</td>
<td>121.4</td>
<td>121.7 (CH)</td>
<td>122.3</td>
<td>121.8</td>
<td>121.5</td>
<td>121.7</td>
</tr>
<tr>
<td>7</td>
<td>33.1</td>
<td>31.9</td>
<td>31.9</td>
<td>31.9 (CH$_3$)</td>
<td>33.1</td>
<td>32.6</td>
<td>32.7</td>
<td>32.7</td>
</tr>
<tr>
<td>8</td>
<td>33.1</td>
<td>31.9</td>
<td>31.9</td>
<td>31.9 (CH)</td>
<td>33.1</td>
<td>32.6</td>
<td>32.7</td>
<td>32.7</td>
</tr>
<tr>
<td>9</td>
<td>51.4</td>
<td>50.2</td>
<td>50.2</td>
<td>50.1 (CH)</td>
<td>51.4</td>
<td>50.9</td>
<td>51.0</td>
<td>51.3</td>
</tr>
<tr>
<td>10</td>
<td>37.6</td>
<td>36.5</td>
<td>36.5</td>
<td>36.5</td>
<td>37.6</td>
<td>37.0</td>
<td>37.4</td>
<td>37.4</td>
</tr>
<tr>
<td>11</td>
<td>22.3</td>
<td>21.1</td>
<td>21.1</td>
<td>21.1 (CH$_3$)</td>
<td>22.3</td>
<td>21.7</td>
<td>21.9</td>
<td>21.9</td>
</tr>
<tr>
<td>12</td>
<td>41.0</td>
<td>39.8</td>
<td>39.8</td>
<td>39.8 (CH$_2$)</td>
<td>41.0</td>
<td>40.4</td>
<td>40.8</td>
<td>40.7</td>
</tr>
<tr>
<td>13</td>
<td>43.4</td>
<td>42.3</td>
<td>42.3</td>
<td>42.3 (CH$_2$)</td>
<td>43.3</td>
<td>43.0</td>
<td>43.0</td>
<td>43.2</td>
</tr>
<tr>
<td>14</td>
<td>58.0</td>
<td>56.8</td>
<td>56.8</td>
<td>56.8 (CH)</td>
<td>58.0</td>
<td>57.2</td>
<td>57.4</td>
<td>57.8</td>
</tr>
<tr>
<td>15</td>
<td>25.5</td>
<td>24.3</td>
<td>24.3</td>
<td>24.3 (CH$_3$)</td>
<td>25.4</td>
<td>24.8</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>16</td>
<td>29.4</td>
<td>28.3</td>
<td>28.3</td>
<td>28.2 (CH$_3$)</td>
<td>29.4</td>
<td>24.8</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>17</td>
<td>57.4</td>
<td>56.2</td>
<td>56.1</td>
<td>56.1 (CH)</td>
<td>57.4</td>
<td>56.9</td>
<td>57.0</td>
<td>57.2</td>
</tr>
<tr>
<td>18</td>
<td>13.1</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9 (CH$_3$)</td>
<td>13.1</td>
<td>12.3</td>
<td>12.5</td>
<td>12.4</td>
</tr>
<tr>
<td>19</td>
<td>20.6</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4 (CH$_3$)</td>
<td>20.6</td>
<td>19.8</td>
<td>20.1</td>
<td>19.9</td>
</tr>
<tr>
<td>20</td>
<td>37.0</td>
<td>36.8</td>
<td>35.8</td>
<td>35.8 (CH)</td>
<td>37.0</td>
<td>36.5</td>
<td>36.8</td>
<td>36.8</td>
</tr>
<tr>
<td>21</td>
<td>20.0</td>
<td>18.8</td>
<td>18.7</td>
<td>18.7 (CH$_3$)</td>
<td>20.0</td>
<td>19.3</td>
<td>19.5</td>
<td>19.4</td>
</tr>
<tr>
<td>22</td>
<td>37.4</td>
<td>36.2</td>
<td>36.2</td>
<td>36.2 (CH$_2$)</td>
<td>37.4</td>
<td>37.0</td>
<td>37.0</td>
<td>37.2</td>
</tr>
<tr>
<td>23</td>
<td>25.1</td>
<td>23.9</td>
<td>23.8</td>
<td>23.8 (CH$_2$)</td>
<td>25.1</td>
<td>24.6</td>
<td>24.7</td>
<td>24.7</td>
</tr>
<tr>
<td>24</td>
<td>40.7</td>
<td>39.5</td>
<td>39.5</td>
<td>39.5 (CH$_3$)</td>
<td>40.7</td>
<td>40.2</td>
<td>40.2</td>
<td>40.3</td>
</tr>
<tr>
<td>25</td>
<td>29.2</td>
<td>28.0</td>
<td>28.0</td>
<td>28.0 (CH)</td>
<td>29.1</td>
<td>28.6</td>
<td>28.7</td>
<td>29.0</td>
</tr>
<tr>
<td>26</td>
<td>23.9</td>
<td>22.6</td>
<td>22.6</td>
<td>22.6 or 22.8 (CH$_3$)</td>
<td>23.9</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
</tr>
<tr>
<td>27</td>
<td>24.1</td>
<td>22.8</td>
<td>22.8</td>
<td>22.8 or 22.6 (CH$_3$)</td>
<td>24.1</td>
<td>23.3</td>
<td>23.5</td>
<td>23.3</td>
</tr>
</tbody>
</table>

aChemical shifts in ppm relative to the internal standard, tetramethylsilane (TMS).

bMantsch and Smith (1973).

cBlunt and Stothers (1977).

dSmith (1978).

eOur own data 13C NMR (75 MHz).

fAssigned by analogy to previous publications.

1. Cholesterol chemistry and cell function
Weigert, & Roberts, 1969; Smith, 1978; Smith, Deavenport, Swanzy, & Pate, 1973). Blunt and Stothers covered the 13C NMR assignments of cholesterol in several deuterated solvents (Blunt & Stothers, 1977) and the chemical shifts are presented in Table 2. The 27 carbon atoms of cholesterol are characterized to possess mainly nonpolar atoms (24 out of the 27), a polar atom corresponding to C-3 and the unsaturated carbons corresponding to C5=C6 double bond, in a total range of 130 ppm. From analyzing the data shown in Table 2 we can state that the chemical shifts vary slightly with the solvent used in the acquisition and even using the same solvent, the data can be quite different according to the research group.

Based on a more detailed analyzes on the data provided by Mantsc et al., the most solvent-sensitive positions are the 3-OH and C-6, both of which are shifted by about 1 ppm in CDCl$_3$ and about 0.5 ppm in CCl$_4$, for higher frequency values, when compared to benzene-d_6, pyridine-d_5, and 1,4-dioxane-d_4 (Table 2).

Cholesterol laboratory synthesis

Cholesterol total synthesis—Historical perspective

The total synthesis of cholesterol was one of the most remarkable achievements of 20th century Chemistry. An upmost historical curiosity is that the laboratory synthesis of cholesterol was some sort of a mental competition between Robinson in Oxford and Woodward at Harvard. The interesting outcome was that both research groups, simultaneously and independently, achieved the cholesterol total synthesis in 1951 (Cardwell, Cornforth, Duff, Holtermann, & Robinson, 1951; Woodward, Sondheimer, & Taub, 1951a). According to chemistry historian Mulheirn (2000), the preliminary notice of Robinson’s total synthesis was published in Chemistry and Industry in 1951 (Cardwell et al., 1951), only a couple of weeks after Woodward’s announcement of his own synthesis at the Chemical Society Centenary Lecture (subsequent preliminary notice of the synthesis was published in the Journal of the American Chemical Society) (Woodward, Sondheimer, Taub, Heusler, & McLamore, 1952). Despite Robinson substantial contributions to synthetic organic chemistry (Robinson annulation is perhaps the most well-known), Woodward was able to complete his project in a remarkably short period (around 2 years), which was testimony both to his brilliance and to the pharmaceutical industry financial support.

The Woodward synthesis itself can be described as a C \rightarrow CD \rightarrow BCD \rightarrow ABCD route (Fig. 4), rather than the BC \rightarrow ABC \rightarrow ABCD route (Fig. 5) used by Robinson. Woodward was able to gather support of industry to not only fund human resources but also supply key intermediates; Robinson’s synthesis in turn had to resort to using relays. Many of chemical intermediates of Robinson’s synthesis were already known and available from natural sources, and therefore, Robinson’s challenge was to proof that these intermediates could be linked to each other via chemical synthesis, in order to develop a formal cholesterol total synthesis. From a practical point of view, and despite that all steroid intermediates of Robinson’s relay approach were already known, his linear cholesterol synthesis requires 68 reaction steps, (Cardwell et al., 1951; Cardwell, Cornforth, Duff, Holtermann, & Robinson, 1953; Cornforth & Robinson, 1946, 1949) in opposition to Woodward’s with “only” 35 steps (Woodward et al., 1952; Woodward, Sondheimer, and Taub, 1951a, 1951b; Woodward, Sondheimer, Taub, Heusler, & McLamore, 1951).
Woodward’s cholesterol total synthesis

The retrosynthetic analysis of Woodward’s approach could sometimes be misunderstood, since the D ring remains D-homo until the last step of ring construction (Scheme 2) and the required 5-membered ring was obtained only after a ring contraction; it could also be termed as $C \rightarrow BC \rightarrow ABC \rightarrow A B C D$. Whatever the case, Woodward’s starting point was 5-methoxy-2-methyl-1,4-quinone 1, used to form ring C in the final structure. The Diels-Alder reaction of hydroquinone 1 with butadiene 2 gave the cis-bicycle 3, which was converted to the trans-isomer 4 through sodium enolate followed by acidification (Scheme 1). Reduction with lithium aluminum hydride (LiAlH₄) followed by dehydration gave ketol 6, which upon deoxygenation of its acetate with zinc gave enone 8 (Scheme 1). Claisen condensation of enone 9 followed by Michael addition of ethyl vinyl ketone originates dione 10, which undergoes cyclization with KOH to produce tricycle 11 (Scheme 1). The following steps of Woodward’s synthesis involve the diol 12 formation with osmium tetroxide (OsO₄), subsequent diol protection with acetone and copper(II) sulfate (CuSO₄), hydrogenation and Claisen condensation to give 15.

FIG. 4 Retrosynthetic analysis of Woodward’s cholesterol total synthesis.

FIG. 5 Retrosynthetic analysis of Robinson’s cholesterol total synthesis.

Woodward’s cholesterol total synthesis
Cholesterol laboratory synthesis

(Scheme 1). The enamine protection followed by Michael addition of cyanoethylene and subsequent nitrile hydrolysis gave the carboxylic acid 18 (Scheme 1). Lactonization of carboxylic acid 19, followed by Grignard reaction with methylmagnesium bromide (MeMgBr), and subsequent aldol condensation gave the tetracyclic ketone 21 (Scheme 1), which completes the four-ring structure required for cholesterol synthesis. Tetracyclic ketone 21 (nicknamed “Christmasterone”) was obtained on Christmas Day in 1950 by Sondheimer, and it was a topmost example of Woodward’s high-pressure style of leadership combined with the sense of success being just around the corner. At this point, the final hurdle was the contraction of ring D from a six-membered to a five-membered ring.
SCHEME 2 Woodward’s cholesterol total synthesis: preparation of cholestanol 36.

Treatment of Christmasterone 21 with periodic acid (HIO₄) in 1,4-dioxane followed by heating the product 22 in the presence of a catalytic amount of piperidine acetate gave DL-Δ⁹(11),16-bisdehydro-20-norprogesterone 23 (Scheme 2), from which a route to cholesterol was known. The sodium dichromate (Na₂Cr₂O₇) oxidation of the aldehyde function of 23 gave carboxylic acid 24, which upon diazomethane esterification, hydrogenation and oxidation gave ketone 27 (Scheme 2). The sodium borohydride (NaBH₄) ketone reduction, ester hydrolysis, and secondary alcohol acetylation with acetic anhydride gave carboxylic acid 30 (Scheme 2). The final stages of Woodward’s synthesis were focused on the preparation of C-17 aliphatic side chain. The thionyl chloride (SOCl₂) treatment of carboxylic acid 30 gave the corresponding acyl chloride 31, which upon methyl cadmium (MeCd) and Grignard reaction with isohexylmagnesium bromide afforded diol 33 (Scheme 2). Three reaction steps later, involving dehydration, hydrogenation and ester hydrolysis, cholestanol 36 was obtained (Scheme 2). The conversion of cholestanol 36 into cholesterol 41 was already demonstrated, involving five additional
reaction steps (Scheme 3). The oxidation of cholestanol 36 to the corresponding ketone 37 and further selective C-4 bromination and elimination gave cholestenone 39 (Scheme 3).

The conversion of cholestenone 39 into cholesterol 41 was accomplished by the method of Dauben and Eastham reported in 1950 (Dauben & Eastham, 1950). The treatment of cholestenone 39 with acetyl chloride in acetic anhydride gave the enol acetate 40 which, without purification, was reduced by sodium borohydride and potassium hydroxide to yield natural cholesterol 41, upon fractionation with digitonin for the isolation of the correct isomer (Scheme 3) (Birch, 1950; Dauben & Eastham, 1950; Djerassi & Scholz, 1948; Kritchevsky, Garmaise, & Gallagher, 1952; Ruzicka, Plattner, & Aeschbacher, 1938).

Robinson’s cholesterol total synthesis

As Robinson used a BC → ABC → ABCD synthetic approach (Fig. 5), his starting material was 1,6-dihydroxynaphthalene 42 (corresponding to B and C rings in the final cholesterol structure), which was converted in the tricyclic structure 43 in a five reaction steps protocol (addition of A ring) (Scheme 4).

The synthesis of the first relay molecule 44 (also known as Reich diketone) (Reich, 1945) was completed 12 steps later (Scheme 4). The second relay molecule 45 was prepared resorting to eight additional reaction steps. Interestingly, this differed from the first one in “only” a double bond in ring B and the 3-hydroxy group replacing the original carbonyl group (Scheme 4). Resorting to another 12 reaction steps, Robinson prepared his third relay molecule 46, *en route* to the fourth relay 47, which has already ring D of the final cholesterol structure (Scheme 4).
Two more relays were synthesized, molecules 48 and 49, being the final 12 reaction steps used to add the cholesterol tail. Thus, he resorted to a similar strategy to that used by Woodward (Scheme 4).a The conversion of cholestanol 36 into cholesterol 41, followed the same already known methodology depicted in Scheme 3.

Cholesterol hemisynthesis

The introduction of cholesterol side chain at C-20 is quite a challenge, as can be understood either from Woodward’s or Robinson’s total syntheses. An interesting approach, however, was developed by Schmuff and Trost (1983), based on organocuprate-mediated methods. This strategy started from the natural dehydroepiandrosterone 50 which was further converted in alcohol 51 in three reaction steps (Scheme 5). Then, the Moffatt-type oxidation gave the (\textit{E})-enone 52, which upon reaction with lithium diisohexylcuprate gave cholestanone 53

a A relay molecule can be defined as a compound which needs to be synthesized for the first time in total synthesis methodologies, but once synthesized, it is necessary to have it available in larger quantities from natural sources. This strategy saves many valuable man-hours synthesizing the relay substrates in the laboratory, because for every experiment that is successful, there are many that are not, and so a large amount of substrate is needed at each stage in the synthesis.
as the only detectable C-20 isomer (Scheme 5). Subsequent Wolff-Kishner reduction gave the isocholesterol methyl ether 54, which was further converted into cholesterol (Scheme 5).

Synthesis of ent-cholesterol: The unnatural enantiomer

All known natural sterols have the same absolute configuration at the C-10 and C-13 quaternary centers, and so there is no simple way to convert readily available natural sterols into their enantiomeric series. Therefore, the preparation of ent-cholesterol (the unnatural enantiomer of cholesterol) (Fig. 6) is only possible through enantioselective total synthesis.

The ent-cholesterol 55 total synthesis was reported for the first time in 1992 by Rychnovský and Mickus (1992). They took as inspiration an elegant stereoselective synthesis of 19-nor steroids by a group at Hoffmann-La Roche, and prepared ent-testosterone 64 as chemical intermediate for the synthesis of ent-cholesterol (Scheme 6). The achiral triketone 56 was used as starting material for the enantioselective intramolecular aldol reaction followed by acid-catalyzed elimination to give the chiral enedione 57 (Scheme 6). The stereogenic center in dione 57 was employed to control the remaining stereocenters in the final ent-cholesterol. The NaBH₄ reduction of the saturated ketone followed by protection with isobutylene gave enone 58, which upon treatment with Stile’s reagent delivers the carboxylic acid 59 (Scheme 6). Hydrogenation and reaction with
aqueous formaldehyde gave the enone 60, which upon Robinson annulation with β-keto ester 61 gave the tricyclic intermediate 62 (Scheme 6). The 19-methyl group was introduced through enone reduction followed by treatment with iodomethane to give ketone 63 (Scheme 6). The acid catalyzed cyclization of ketone 63 gave the required ent-testosterone 64 (Scheme 6).

Once ent-testosterone 64 was obtained, Rychnovsky and Mickus were able to reach ent-cholesterol in a few reaction steps (Scheme 7). They obtained the β,γ-unsaturated ketone 65 in acidic media, which upon reduction with LiAl(OtBu)₃H followed by OH-protection with tert-butylidimethylsilyl chloride (TBSCI) gave the monosilyl diol 67 (Scheme 7). The stereochemistry at C-17 and C-20 was set by hydroboration with 9-borabicyclo[3.3.1]nonane (9-BBN) which enters from the top face of the alkene. Coupling the resulting hindered trialkylborane with chloroacetonitrile in the presence of a hindered base gave nitrile 69 as a single isomer (Scheme 7). The side chain was completed by nitrile alkylation with 1-bromo-3-methylbutane and reductive decyanation followed by desilylation to afford ent-cholesterol (Scheme 7).

An alternative methodology to convert ent-testosterone into ent-cholesterol was reported later in 1999 by Kumar and Covey (1999). To do so, Kumar and Covey used the previously reported methodology to prepare steroid 67 from ent-testosterone 64 (Scheme 7). However, they faced successive experimental failures building up the side chain of ent-cholesterol, and therefore they were forced to consider an alternative strategy to complete the synthesis (Scheme 8).

The Kumar and Covey strategy relied on the ene reaction of (Z)-olefin 70 with 4-methylpent-1-enal which gave the epimeric alcohol 71 (Scheme 8). The selective reduction
Cholesterol laboratory synthesis

of Δ^{16}-double bond of 71 gave the C-22 epimers of steroid 72, which upon a tosylation/detosylation method gave steroid 74 (Scheme 8). The final removal of TBS protecting group with Bu_{4}NF gave ent-cholesterol 55 (Scheme 8).

As demonstrated earlier in this chapter, the common synthetic strategies for the synthesis of either cholesterol or ent-cholesterol proceed via the initial construction of the steroid ring system followed by the subsequent introduction of the C-17 side chain. This type of synthetic strategies is not suitable for preparing ^{13}C-labeled ent-cholesterols because the isotopic labels have to be incorporated before the multiple steps involved in construction of the side chain are initiated. In this sense, Jiang and Covey proposed in 2002 the total synthesis of ent-cholesterol by a route which starts with construction of the sterol D-ring containing the cholesterol side chain and then proceeds via elaboration of the sterol C, B, and A rings, respectively (Jiang & Covey, 2002). Accordingly, they started with methyl acetoacetate 75 which was converted in three steps into racemic compound 76 (Scheme 9). The addition of 4-methylpentylmagnesium
1. Cholesterol chemistry and cell function

SCHEME 9 ent-Cholesterol total synthesis reported by Jiang and Covey.
bromide to β-keto ester 76 gave racemic product 77, which upon transesterification with (R)-pantolactone gave a diastereomeric mixture from which diastereomer 78 was easily separated (Scheme 9). At this point, the side chain of ent-cholesterol was already incorporated, and subsequent reaction with methyl vinyl ketone gave the intermediate compound 79, thus setting the proper chemical features of what will become the C-ring, and also formation of the 18-methyl group (Scheme 9). p-Toluenesulfonic acid (p-TsOH) catalyzes the cyclization of intermediate 79 to give enone 80, which upon reaction with ethylene glycol was converted into ketal 81 (Scheme 9). The (R)-pantolactone group of compound 81 was then reduced using LiAlH₄ and upon three additional reaction steps, the 18-methyl group with proper stereochemistry was established in compound 83 (Scheme 9). The removal of the ketal protecting group from 83 yielded the desired C,D ring-side chain fragment, indenone 84 (Scheme 9). The reaction between indenone 84 and magnesium methyl carbonate (MMC) in DMF, followed by COOH methylation gave the keto ester 85, used to stabilize the keto acid obtained from reaction with MMC (Scheme 9). Hydrogenation using 5% Pd/BaSO₄ gave saturated keto ester 86, which was subsequently converted in compound 90, in four steps so that the remaining rings of ent-cholesterol could be built (Scheme 9). Next, displacement of the mesylate group of compound 90 by the anion formed from methyl 6-(2-methyl-1,3-dioxolan-2-yl)-3-oxohexanoate 91, followed by cyclization gave compound 92 (Scheme 9). The introduction of the 19-methyl group of ent-cholesterol into precursor enone 92 was made by reduction followed by lithium enolate intermediate reaction with excess iodomethane to give compound 93, which upon cyclization rendered ent-cholestenone 94 (Scheme 9). The conversion of ent-cholestenone 94 to ent-cholesterol 55 was achieved via the dienol acetate, which was then reduced with NaBH₄ to give ent-cholesterol 55 (Scheme 9).

Sixteen years later from Rychnovsky first synthesis of ent-cholesterol 55, his group reported a new concise and scalable synthesis of the unnatural enantiomer of cholesterol, starting from (S)-citronellol (Fig. 7) (Belani & Rychnovsky, 2008). The Rychnovsky new synthesis of ent-cholesterol 55 is based on a ring D to C to B to A approach and incorporates the cholesterol side chain early in the synthetic procedure, as in the strategy reported in 2002 by Jiang and Covey.

The first key intermediates C and B were synthesized following a C–H insertion strategy (Fig. 7 and Scheme 10). Commercially available (S)-citronellol was converted to the corresponding benzenesulfonate and subsequently alkylated with the dianion of methyl

FIG. 7 Retrosynthetic analysis of ent-cholesterol starting from (S)-citronellol.
SCHEME 10 Synthesis of ent-cholesterol from (S)-citronellol.
acetoacetate to give β-keto ester 96 (Scheme 10). A diazo transfer reaction allowed the conversion of β-keto ester 96 into α-diazo-β-keto ester 97, which upon diastereoselective C–H insertion reaction gave the keto ester 98 (Scheme 10). The C–H insertion strategy drastically shortens the synthesis of the sterol side chain and allows the C-20 stereogenic center to be introduced from a chiral pool source. Hydrogenation of keto ester 98 using palladium on carbon (Pd/C) provided compound 99 with a saturated side chain, which subsequently underwent methylation followed by decarboxymethoxylation to give α-methyl ketone 101 as a single diastereomer (Scheme 10). The Robinson annulation of ketone 101 with methyl vinyl ketone gave the corresponding Michael adduct which, upon treatment with p-TsOH, provided the enone 102 (CD rings completed) (Scheme 10). The strategy for the conversion of enone 102 to ent-cholesterol was the same double annulation strategy developed by Hoffmann La Roche, similar to that used by Rychnovsky in his first ent-cholesterol synthesis (Rychnovsky & Mickus, 1992). Therefore, the treatment of enone 102 with Stile’s reagent gave the carboxylic acid 103, which upon hydrogenation and subsequent reaction with formaldehyde followed by the addition of thiophenol gave thioether 104 (Scheme 10). The annulation of thioether 104 with β-keto ester 91 provided the tricyclic enone 105, which upon reduction and alkylation installed the C-19 methyl group stereoselectively (Scheme 10). Acid-catalyzed deprotection of the ketal followed by aldol condensation provided the A ring of ent-cholestenone. The AB ring functionality was modified by deprotonation using tBuOK, followed by kinetic protonation to provide the deconjugated ketone and diastereoselective reduction of the ketone with Li(OtBu)_3AlH gave ent-cholesterol (Scheme 10) (Belani & Rychnovsky, 2008).

Concluding remarks

Cholesterol is an essential component of animal cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The interest of scientist and industry in steroids, particularly cholesterol, dates back to the 1930s as these compounds were widely used in medicine. Steroids were big business in the pharmaceutical industry and a company that discovered viable ways to produce them stood to make huge profits. At that time, steroids were exclusively obtained through chemical conversion of steroid precursors extracted from natural sources in very expensive and unproductive processes. As a consequence, a general belief that completes synthesis might provide a cheaper and quicker method of production of steroids started to grow, even though complete synthesis might require over 30 stages. It is no coincidence, though, that one of the most significant chemical problems of that time drew the attention of two of the greatest chemists of the 20th century: Sir Robert Robinson at Oxford and R.B. Woodward at Harvard. Cholesterol was the most complex organic molecule synthesized up to that time, and its total synthesis paved the way for the synthesis of many related steroid hormones. Since 1951, there was no significant developments in cholesterol synthesis, with only one example of hemisynthesis from dehydroepiandrosterone through organocuprate-mediated methods. Interestingly enough, in recent years, cholesterol unnatural enantiomer—ent-cholesterol, has drawn much more attention than cholesterol itself. In fact, the scientific applications of ent-cholesterol as a tool to study the enantioselectivity of cholesterol interactions or the molecular recognition of cholesterol stereoisomers by monoclonal antibodies, for example, drove the development of three total synthetic routes to it within 18years’ time lapse. Noteworthy is the synthesis of
Jiang and Covey which allows the preparation of 13C- and 2H-labeled forms of ent-cholesterol, introduced near the end of the reaction sequence. This route is of particular importance for NMR studies of ent-cholesterol interactions. Apart from that, cholesterol has more interest in Chemistry as synthon to create cholesterol-based new molecules for a wide range of applications ranging from drug delivery or bioimaging applications to cholesterol-based liquid crystals and gelators (Albuquerque, Santos, & Silva, 2019).

References

1. Cholesterol chemistry and cell function

With *CHOLESTEROL: From Chemistry and Biophysics to the Clinic*, Professors Anna Bukiya and Alex Dopico have compiled a comprehensive resource on both biological and clinical aspects of cholesterol, spanning the biophysics and biochemistry of this very special lipid, as well as the latest pharmacological discoveries used to tackle human disorders associated with abnormal cholesterol levels. Early chapters on basic sciences offer insights on the fundamental role of cholesterol in biological membranes, lab chemistry, cholesterol metabolism and synthesis, molecular evolution of cholesterol and sterols, and cholesterol modulation of membrane-spanning peptides, ion channels and receptors. Chapters on cellular and organismal development discuss blood cholesterol levels, cholesterol transport by lipoproteins and cholesterol metabolism, the role of cholesterol in early human development, and the contribution of genetics and nutrition to hypercholesterolemia. Pathophysiology specialists review familial hypobetalipoproteinemia, critical illness and cholesterol levels, coronary artery disease, cholesteryl ester storage disease, Niemann-Pick disease type C, cholesterol and viral pathology, cholesterol and neurodegenerative disorders, and the links of cholesterol to substance use disorders, using alcohol as an example. The final section examines the pharmacology of cholesterol-containing drug delivery systems, the impact of cholesterol on the effect of anesthetics and drug receptors in the cardiovascular system, and clinical strategies for reducing cholesterol levels. The section also introduces the reader to the future of cholesterol-lowering drugs based on cyclodextrins and highlights several examples when clinical management of cholesterol levels faces challenges in specific patient populations, such as patients who have rheumatoid arthritis and HIV.

Key Features

- Ties basic biology to clinical application and drug discovery
- Provides a one-stop source of information from bench to bedside
- Examines the latest pharmacological advances used to tackle cholesterol-related disorders
- Includes chapters contributed by a wide range of specialists, uniting various disciplines