Title
13th International Chemical and Biological Engineering Conference (CHEMPOR 2018)
Book of Extended Abstracts

Editors
João Araújo Pereira Coutinho
Carlos Manuel Silva
Inês Portugal
Ana Barros-Timmons
Anabela Aguiar Valente
Dmitry Victorovitch Evtuygin
Mara Guadalupe Freire
Pedro Jorge Carvalho

Publisher
UA Editora
Universidade de Aveiro

1st Edition – October 2018

ISBN
978-972-789-566-3
[P-BS25]
Extraction and recovery of phenolic compounds from biomass residues using aqueous solutions of ionic liquids, E.L.P. Faria, A.F. Cláudio, J.A.P. Coutinho, A. Silvestre, M.G. Freire 350

[P-BS26]
Oxidative polymerization of magnesium-based lignosulphonates from acidic Eucalyptus globulus sulfite pulping by laccase: preliminary results, S. Magina, A.B.-Timmons, D.V. Evtuguin 351

[P-BS27]
Valorization of Quercus cerris cork by supercritical extraction with modified carbon dioxide as green and efficient solution in relation to the classical extraction with organic solvents, P.G. Vieira, M.M.R. De Melo, A. Šen, M.M.Q. Simões, H. Pereira, I. Portugal, C.M. Silva 353

[P-BS28]

[P-BS29]

[P-BS30]
Past and future research programme on biorefinery and bioproducts at the Navigator Company, P. Pinho, A. Gaspar, R. Rodrigues, C. Neto ... 359

Poster session | Reaction and Separation Processes [P-RS]

[P-RS01]
Removal of antimony from water by iron-coated cork granulates, A. Pintor, B. Vieira, R. Boaventura, C. Botelho ... 363

[P-RS02]
Study of the effect of the compensating anion on the CO₂ sorption capacity of hydrotalcite-based sorbents, C. Rocha, M. Sorta, L.M. Madeira .. 365

[P-RS03]

[P-RS04]
Solketal production from glycerol ketalization with acetone: Thermodynamic and Reaction Kinetic Study, M. Moreira, R. Faria, A.M. Ribeiro, A.E. Rodrigues .. 369
Separation of nadolol racemates by high pH reversed-phase preparative fixed-bed chromatography: Comparison of C18 materials

R. Arefah, A. Ribeiro, A. Rodrigues, L. Pais

1 Centro de Investigaçao de Monaghan (CTMO), Polytechnic Institute of Bragança, Campus Santa Apolonia, Apartado 1154, 5301-857 Bragança, Portugal; 2 Laboratory of Separation and Reaction Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias sn, 4200-465 Porto, Portugal.

Introduction

One of the main goals of the pharmaceutical industry nowadays, is to have more safe and efficient drugs. The purification of chiral pharmaceutical drugs is getting the interest from the industrial companies, particularly after the international regulations. Currently, more than 40% of marketed drugs have chiral active ingredients and almost half of these drugs are marketed as racemic mixtures.

Nadolol is one representative beta-blocker pharmaceutical drug prescribed worldwide for relief of several diseases mainly related with the cardiovascular system. However, like other pharmaceutical drugs, it is also related with some severe risks, such as depression, insomnia and cardiovascular failure, among others. Some authors refer that these side effects could be related to the fact that nadolol drug is still marketed as a mixture of equal amounts of its four stereoisomers. Additionally, there are studies referring that some therapeutic effects of this drug are related to only one of the four stereoisomers. Despite the growing pressure of the international regulation agencies for pharmaceutical drugs’ safety, pure single nadolol stereoisomers are still not commercially available.

The nadolol pharmaceutical drug represents a very interesting case-study of multicomponent chiral separation since it is composed by four stereoisomers, being two pairs of enantiomers. In this way, it introduces the possibility of alternative strategies, using different kind of separation sequences and techniques, the use of different packings (chiral and achiral stationary phases), and the correspondent mobile phase optimization at both normal and reversed phase modes [1-3].

The design of the complete separation of nadolol stereoisomers asks for a global experimental and simulation methodology considering both the characterization and the optimization of each separation step and its sequences, to achieve the four nadolol components pure.

The present work will scope on optimizing the enantiomers separation of nadolol using different achiral C18 adsorbents. For this case, an extensive set of experiments were carried out using achiral C18 columns, such as, XBridge, Shield and XSelect, all the three achiral adsorbents obtained from Waters.

Fixed-Bed technology will be used for the multicomponent preparative separation of a pharmaceutical beta-blocker chiral drug. New strategies using different achiral stationary phases will be presented. Nadolol is a quaternary mixture of equal amounts of four stereoisomers and will be used as case-study. A new methodology for the design, optimization and experimental implementation of the multicomponent separation will be introduced, including the use of three different achiral adsorbents, the screening and choice of the best adsorbent-solvent combination, taking in account the final preparative separation using the fixed-bed technology. Extensive experimental and simulation results will be presented, including solvent screening, measurement of equilibrium adsorption isotherms, breakthrough measurements, and fixed-bed (Azura prep HPLC unit) experimental preparative separation using C18 columns under reversed-phase mode.

Materials and methods

The mixture of the four nadolol stereoisomers was obtained from Sigma-Aldrich (Schnelldorf, Germany). The HPLC-grade solvents, ethanol, acetonitrile and the basic modifier dichlormethane (DEA) were obtained from Fluka (Buchs, Switzerland). Three types of analytical (4.6mm ID x 250mm L; particle size diameter of 5 μm) and preparative (19mm ID x 100mm L; particle size diameter of 10 μm) Waters C18 achiral columns were used: XBridge, Shield and XSelect, all obtained from Waters. The columns’ efficiency characterization, screening of the mobile-phase composition, loading experiments, adsorption isotherms and breakthroughs measurements were carried out using a preparative Knauer HPLC system equipped with a Smartline UV detector 2520 set at 270 nm wavelength, two Smartline 1050 pumps with 50 mL pump heads, a manual injection valve and two different loops (100 and 1000 μL). The analytical pulses of nadolol were carried out on a Knauer analytical HPLC system. This system was equipped with a Smartline UV detector 2520 set at 270 nm wavelength, one Smartline 1050 pump with 10 mL pump head, a manual injection valve and a loop of 20 μL. The preparative separation of nadolol stereoisomers was carried out on an Azura Fixed-Bed preparative HPLC system from Knauer (See Fig. 1).
Modelling and its validation is a crucial step to the accurate equilibrium and kinetic data estimation. Some simulation results for the preparative separation of the nadolol racemates by simulated moving bed technology will be also presented (See Fig 3). Finally, some experimental results concerning the preparative separation of nadolol racemates using the Azura Fixed-Bed preparative HPLC system will be also presented.

Figure 3. SMB productivity (left) and solvent consumption (right) for the separation of nadolol racemates using the XBridge (solid lines), Shield (dashed lines) and XSelect (dotted lines) columns using a 30%ethanol/70%water with 0.005%dichethylamine as mobile phase (pH-11) as a function of the nadolol feed concentration.

Conclusions

The optimization of preparative fixed-bed chromatography depends on the proper choice of the mobile phase composition. The separation of nadolol racemates was studied using different ethanol/water compositions with three different achiral C18 Waters materials (XBridge, XSelect and Shield) at both analytical and preparative scales. The design of the preparative separation process was studied, by means of loading pulses, the measurement of the adsorption equilibrium isotherms, breakthrough experiments using a 30%ethanol/70%water mobile phase composition. A linear Langmuir model was found to describe well the adsorption behavior. Breakthrough experiments were also performed to validate the equilibrium model and to predict axial dispersion and mass transfer resistance. The equilibrium data was also used to predict the operating conditions for future extra simulated moving bed (SMB) operation. Additional experiments were carried out on a fixed-bed preparative system in order to optimize the separation of nadolol racemates. A mobile phase composition of 20%ethanol/80%water/0.1%dichethylamine was selected to perform a sequential five-injection experiment to confirm the viability of fixed-bed operation for obtaining pure nadolol racemates.

Acknowledgements

This work is a result of project “APIprocMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and of project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM funded by ERDF through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT – Fundação para a Ciência e Tecnologia.

References