Contents

Historical Programming .. S4
Early Career Distinguished Scholars ... S10
Outstanding Student Paper Awards ... S11
Symposia .. S13
Free Communications: Verbal and Poster
Motor Development .. S45
Motor Learning & Control .. S110
Sport and Exercise Psychology .. S212
Conference Chairs and Committees

Conference Program Chair
Jennifer L. Etnier, University of North Carolina at Greensboro, USA

Site Coordinator
Penny McCullagh, California State University–East Bay, USA

Motor Development
Jackie Goodway, Ohio State University, USA (Chair) Ali Brian, University of South Carolina, USA
John Cairney, McMaster University, Canada Eva D’Hondt, Vrije University, Belgium Matthieu Lenoir, University of Gent, Belgium Ting Liu, Texas State University, USA
Mary Rudisill, Auburn University, USA
Nadia Cristina Valentini, Federal University of Rio Grande do Sul, Brazil

Motor Learning and Control
Shannon Ringenbach, Arizona State University, USA (Chair) Jeffrey Haddad, Purdue University, USA
Louisa Raisbeck, University of North Carolina at Greensboro, USA Rajiv Ranganathan, Michigan State University, USA
Diane Ste. Marie, University of Ottawa, Canada Breanna Studenka, Utah State University, USA Stephan Swinnen, KU Leuven, Belgium

Sport and Exercise Psychology
Nicholas D. Myers, Michigan State University, USA (Chair) Yu Kai Chang, National Taiwan Sport University, Taiwan
Katrien Fransen, KU Leuven, Belgium
Katie Gunnell, Children’s Hospital of Eastern Ontario, Canada Ben Jackson, University of Western Australia, Australia
Christopher Janelle, University of Florida, USA
Miranda Kaye, Pennsylvania State University, USA Leapetswe Malete, Michigan State University, USA Catherine Sabiston, University of Toronto, Canada Bernd Strauss, University of Munster, Germany

Executive Committee

President
Daniela Corbetta, University of Tennessee, Knoxville, USA
President-Elect Past-President
Steve Bray, McMaster University, Canada
President
Jennifer L. Etnier, University of North Carolina at Greensboro, USA Maureen R. Weiss, University of Minnesota, USA
Past-Presidents’ Liaison
Quincy J. Almeida, Wilfrid Laurier University, Canada Leah Robinson, University of Michigan, USA
Communication Director
Tayo Moss, Michigan State University, USA
Secretary-Treasurer Student
Testing the motor proficiency barrier hypothesis for physical activity and weight status
Lopes, Vitor P., School of Education of Polytechnic Institute of Braganca; Lopes, Luis, University of Porto; Santos, Rute, University of Wollongong; Stodden, David F., University of South Carolina; Rodrigues, Luis P., Instituto Politecnico de Viana do Castelo

Motor competence (MC) is associated with physical activity (PA) and a healthy weight in childhood years. The purpose was to test a MC proficiency barrier (PB), below which children would not achieve enough PA levels to be healthy. Cut-off values in KTK test results were determined with ROC analysis using a cross-sectional sample of 734 (353 girls) 10-year-old children. These cut-off values were subsequently used to define two different groups (high and low MC) in a short term longitudinal sample of 217 (118 girls). MC, PA, and BMI were assessed at baseline (12.1±0.4 years-old) and after two years (14.6±0.3 years-old). RM ANOVA (2x2) were performed to analyze the difference in BMI, sedentary time (ST) and moderate-to-vigorous PA (MVPA) changes between low and high MC at baseline. 2 X 2 Chi-square tests were conducted to test the independence of low and high MC on weight status, PA, and ST. Logistic regressions were conducted to find if the odds of being obese, sedentary, or active were different according PB status at baseline. The MC cut-off of 79 and 75 for girls and boys respectively, were used as PB. In both boys and girls there were no significant changes in BMI, ST, and MVPA, according to MC level. PB effectively predicted significant different classifications on weight status, and combined weight status and MVPA, at both baseline and follow-up. The probability of being overweight two years in the future, when below the hypothesized PB at baseline was 2.78 higher than when above the PB.

Identification of a motor competence proficiency barrier among children for meeting physical activity guidelines
De Meester, An, Ghent University, Belgium; Stodden, David F., University of South Carolina; Goodway, Jacqueline, The Ohio State University; True, Larissa, State University of New York at Cortland; Brian, Ali, University of South Carolina; Ferkel, Rick, Central Michigan University; Haerens, Leen, Ghent University, Belgium

Objectives: This study examined whether there is evidence for a threshold level (proficiency barrier) of actual and/or perceived motor competence below which a child is not likely to attain 60 min of moderate-to-vigorous physical activity (MVPA) per day. Methods: The Self-Perception Profile for Children was used to assess perceived motor competence on 326 children (48.5% boys; age = 9.50 ± 1.24 yrs) while their actual motor competence was assessed using the Test of Gross Motor Development-2. MVPA was measured with accelerometers. We used a multiple regression analysis to test whether actual motor competence, perceived motor competence and the interaction between both significantly predicted the percentage of children meeting the guideline of 60 min of MVPA per day. A chi-squared test was then performed to further examine the relationship between the levels of actual motor competence (low, average, high) and the percentage of children meeting the guideline. Results: Only actual motor competence significantly predicted the percentage of children meeting the MVPA guideline ($\beta = .10$, $p < .001$) and the chi-squared test showed that more children with high actual motor competence (65-100 percentile; 40.74%) met the guideline than children with average (28-64 percentile; 25.49%) or low actual motor competence (0-27 percentile; 11.69%) respectively ($X^2(2) = 18.65$, $p < .001$). Conclusions: The present study provides evidence for the existence of a proficiency barrier in terms of actual motor competence. Almost 90% of the children whose actual motor competence is below the 'average' threshold do not meet the MVPA guideline. As more children with higher levels of