INTRODUCTION

Honey

Honey is defined as the natural substance produced by Apis mellifera bees from plant nectar, from secretions of the living parts of plants, or from the excretions of plant sucking insects feeding on the living parts of plants.\(^1,2\) Honeybees collect, transform, and combine this with specific substances of their own, and then store it and leave it in the honeycomb to ripen and mature. This natural product is generally composed of a complex mixture of carbohydrates and other less common substances, such as organic acids, amino acids, proteins, minerals, vitamins, lipids, aroma compounds, flavonoids, pigments, waxes, pollen grains, several enzymes and other phytochemicals.\(^3,5\) However, the specific composition depends on many factors, such as the nectar composition of the source plant, the species of bee, the climate, environmental and seasonal conditions, agricultural practices and treatment of honey during extraction and storage.\(^6,9\)

As a natural, unprocessed and easily digested food, honey plays an important role in the human diet, and is also used in pharmaceutical and cosmetic industries.\(^10\)

Modern science has studied the medical significance of honeys in healing wounds and burns,\(^11\) oncology care,\(^12\) as well as its antioxidant and antimicrobial properties.\(^3,13,14\)
Propolis

Propolis (bee glue) is a beehive product prepared by bees of the *Apis mellifera* species, using resinous substances collected from various plants. These substances are mixed with the β-glycosidase enzyme of their saliva, partially digested, and added to bee wax to form the final product.

This product, commonly referred as a “natural antibiotic”, has an important role in protecting, reinforcing and repairing the hives. In addition, any invaders are wrapped in propolis and die by asphyxia, then the bodies are preserved, which prevents the putrefaction of the honeycomb. It is also a barrier to molds and yeasts, bacteria, viruses, and rain. Propolis is mainly composed of resins (50%), waxes (30%), essential oils (10%), pollen (5%), and other organic compounds (5%), among which are phenolic compounds, esters, flavonoids, terpenes, aromatic aldehydes and alcohols. However, it is worth mentioning that this composition differs significantly with botanical and geographical origin and depends on climatic conditions, terrain, water availability and other environmental factors.

It has been reported that this product has several pharmacological properties, such as antibiotic, anti-neoplastic, anti-inflammatory, anti-diarrheatic, antimicrobial, antiviral, antioxidant, hepatoprotective, cardiostatic, antitumoral, anti-ulcerus and immunostimulatory activity. Other studies highlight its efficiency as an anti-HIV-1, anti-neurodegenerative and anti-tuberculosis agent.

Due to these medicinal properties, propolis is generating increasing interest from the pharmaceutical, food and cosmetic industries, and it is currently being introduced in products for human consumption, such as drinks and food additives.

PHENOLIC AND FLAVONOID COMPOUNDS

Honey

Phenolic compounds are one of the most important groups of plant secondary metabolites, comprising at least 8000 different known structures. Their chemical structures range from simple phenolic molecules to high molecular weight polymers of approximately 30000 Da. These compounds are reported to exhibit anticarcinogenic, anti-inflammatory, anti-atherogenic, anti-thrombotic, immune modulating, analgesic, antineoplastic behavior, antiviral activity, antiulcer properties, hormone, antibiotic and cardiovascular activities, among others, and exert these functions as antioxidant activities. In addition, flavonoids inhibit lipid peroxidation, platelet aggregation, capillary permeability and the activity of enzyme systems including cyclo-oxygenase and lipoxygenase. The honey phenolics and the flavonoids present in honey are divided into three classes with similar structure; flavonols, flavones and flavanones. These are important due to their contribution to honey color, taste and flavor and also due to their beneficial effects on health. In honey, propolis and royal jelly, most of the phenolic compounds are present in the form of flavonoids, whose concentration depends on various factors, including the plant species used by the bees, the health of the plant, and seasonal and environmental factors. So, the properties of...
honey are expected to vary with the composition of the active compounds it contains. According to references 48 and 49, the principal flavonoids present in honey, propolis and royal jelly are flavonoles (quercetin, kaempherol, galangin, fisetin), flavanones (pinocembrin, naringin, hesperidin), and flavones (apigenin, acacetin, chrysin, luteolin).

According to one study, p-hydroxibenoic acid, cinnamic acid, naringenin, pinocembrin and chrysin were the phenolic compounds present in most of the Portuguese honey samples analyzed by high-performance liquid chromatography with a diode array detector. Since then many other studies have been performed to look at the total phenolics and flavonoids of honey from different regions and countries. Luteolin, quercitrin and isorhamnetin were the flavonoids detected in Meliponinae honey (MH) from the Ecuadorian stingless bee. Other studies analyzed local, unprocessed, multiflora honey and observed that the main flavonoids were luteolin, quercetin, apigenin, kaempferol, isorhamnetin, acacetin, tamarixetin, chrysin, and galangin. In general, the results of a range of studies provide clear information about the similarities of phenolic compounds found in honey samples. However, even though the results obtained by references 10, 50, 51, and 54 partly agree with other papers, there is great qualitative and quantitative variability in the flavonoid content of bee honeys from different geographical areas. It can be stated that more lipophilic flavonoids (pinocembrin, chrysin, genkwanin and tectochrysin) are found in propolis and beeswax; therefore they are regarded as not being related to the floral origin of honey. The rest of the flavonoids are considered to originate from the nectar or the pollen and are therefore directly related to the botanical origin of the honey, which is entirely dependent on the nectar foraged by the bees.

Propolis

The total quantity of polyphenols and flavonoids in propolis are important parameters for evaluating its quality and biological potential. The specific phenolic composition of propolis is extremely dependent on the plants found around the hive, as well on the geographic and climatic characteristics of the location. Existing studies on the chemical composition of European propolis have only determined and identified the phenolic compounds and flavonoids. These compounds have been extracted using different solvents: water, methanol and ethanol. Higher concentrations of flavonoids were obtained in hydro-alcoholic extracts than in methanol or water solvents. These results agree with the data presented in reference 32, which considers propolis from the northeast of Portugal. However, reference 59 obtained inferior values when analyzing propolis from the south of the same country. This discrepancy may be due to the great distances between the locations of origin, and differences in apicultural practices. In fact, the results obtained by reference 26 suggest that propolis from different places contains different concentrations of polyphenols.

It is generally accepted that propolis from temperate climatic zones, like Europe, North America and the non-tropical regions of Asia, originate mainly from the bud exudates of Populus species and their hybrids, and are rich in flavonoids, phenolic acids and their esters, while propolis from tropical regions, where no poplars and birches exist, are rich in prenylated benzophenons, diterpenes and flavonoids.
Other studies revealed that the caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of propolis with several interesting biological properties, including enhancing apoptosis, reducing metastasis, and increasing radiation sensitivity of cancer cells. Additionally, the propolis from tropical zones, in particular the southeastern region of Brazil, were shown to be rich in prenylated phenylpropanoids, although non-typical flavonoids from “poplar type” propolis, such as kaempferide and isosakuranetin, have also been found. Moreover, Cuban propolis has recently caught the attention of scientists because its peculiar enrichment in polyisoprenylated benzophenones makes it chemically distinct from both European and Brazilian bee glue.

Recently, new compounds have been isolated from propolis, such as 3,5-diprenyl-4-hydroxycinnamic acid (artepillin C) from Brazilian green propolis, which may be a key immunomodulatory compound. It was reported that CAPE and artepillin C are the two most immunopotent chemicals found in propolis. Artepillin C, which is a low-molecular-weight phenolic compound, is uniquely found in Brazilian green propolis and is one of its main constituents.

ANTIMICROBIAL ACTIVITY IN THE TREATMENT OF INFECTED WOUNDS AND IN WOUNDS HEALING

Honey

It has been reported that the bacteria in wounds increases oxygen consumption and thus reduces the level of oxygen available to the wound tissues to a point where tissue growth is impaired. The consequences of bacterial infection are non-healing wounds, an increase in wound size, the development of ulcers and abscesses, failure of skin grafts, inflammation, swelling, and pain. Studies have revealed that more than 80 bacteria and yeasts are efficiently inhibited by honey. Emerging evidence from clinical studies suggests that honey is at least as effective as conventional treatments for healing wounds, particularly in very refractory cases such as in diabetics, the elderly, and extensively burned patients. Antibiotic resistance is a public health problem with severe consequences, such as the increasingly difficult treatment of chronic wounds. In this context, it is essential to find alternative treatments; hence bee products and their derivatives may be very useful in this area. Indeed, many studies have assessed the effectiveness of honey for healing wounds that are not responsive to conventional antibiotics and antiseptics.

Several studies revealed that honey has a broad spectrum antibacterial activity at the concentrations used in dressings, with unreported microbial resistance in laboratory wounds. In the last decade, the antimicrobial activity of honey (new, stored, heated, heated and stored and exposed to ultraviolet light) was tested at concentrations in aqueous dressing medium varying between 10 and 100% (w/v) for its activity against common human pathogens. This biological activity was tested in acidic, neutral, and alkaline media. In one study, surgical wounds were made on the dorsa of mice and infected with *Staphylococcus aureus* or *Klebsiella* sp. and then treated with local application of honey four times a day. Appropriate antibiotics were also used and compared with the control values. The application of honey four times a day was compared with the effect of conventional antibiotics in rats with bacterial conjunctivitis induced by *Escherichia coli*, *Proteus* sp.,
S. aureus, Klebsiella sp. Haemophilus influenzae, and Pseudomonas aeruginosa. It was verified that the growth of all the isolates was completely inhibited by 30–100% honey concentrations, with E. coli, P. aeruginosa, and H. influenzae being the most sensitive. The effects of storage on the biological activities of the product were investigated, and the study showed that heating at 80°C for 1 hour followed by 5 years storage decreased the antimicrobial activity of honey, but other conservation methods, such as exposure to ultraviolet light, increased its activity against some microorganisms.

Studies have assessed the in vitro antimicrobial activity of different concentrations of honey ether extracts against Candida albicans, the most prevalent fungal pathogen in humans, using agar-well diffusion and broth micro-dilution methods. Even though honey flavonoids inhibited the growth of the yeasts, they did not kill them, and did not directly affect their cytoplasmic membrane.

Honey has also been reported to be useful in the healing of infected postoperative wounds, where its effectiveness combines with other useful characteristics; it is non-irritating, non-toxic, self-sterile, bactericidal, nutritive, and easily applied. Therefore, honey has advantages as a wound dressing because it provides a moist healing environment and prevents bacterial growth even when the wounds are heavily infected. It is an effective means of rendering heavily infected wounds sterile quickly and of inhibiting the growth of antibiotic resistant strains of bacteria. Its viscosity acts as a further barrier against wound infection.

In a clinical study involving 59 patients with wounds and ulcers, most of which had failed to respond to conventional treatments, fresh honey was applied daily. The bacteria isolated from these wounds (E. coli, S. aureus, Proteus mirabilis, mixed coliforms, Klebsiella sp., and Enterococcus faecalis) were all susceptible to honey in vitro. Another clinical study comprising 50 patients with wounds compared the use of honey as a treatment with the antiseptic Savlon (15% cetrimide, 1.5% chlorohexidine gluconate). Honey cleared 60% of the treated wounds in 6 days whereas Savlon cleared only 36% of wounds within the same period. Another study used honey on nine infants with large infected surgical wounds that had failed to heal with intravenous antibiotics, cleaning the wound with aqueous 0.05% chlorhexidine solution and applying fusidic acid ointment. Marked clinical improvement was seen in all cases after five days of treatment with honey, and all wounds were closed, clean and free of infection after 21 days of this application. Other studies report that two randomized controlled clinical trials have compared honey with silver sulfadiazine ointment on partial-thickness burns. Both showed that honey gave better control of infection. It was observed that honey allowed successful skin grafting in wounds infected with Pseudomonas which had not responded to other treatments. Other authors report the efficiency of the use of honey in patients suffering from wound breakdown after operation for carcinoma of the vulva.

It was observed that manuka honey promoted the healing in venous leg ulcers, giving effective de-sloughing and a lower incidence of infection than the control. In a further study of the use of honey as a wound dressing, honey was evaluated in the treatment of wounds of various etiologies, including diabetic ulcers, and the results indicated that it promoted granulation and epithelization of the wounds, reduced odor and had a dehydrating effect. There are reports of a reduction in edema and pain and improvements in healing outcomes being observed clinically in various types of wound.
A recently published study82 assessed a series of geographically and chemically-defined New Zealand manuka, kanuka and manuka-kanuka blended honeys containing varying concentrations of methylglyoxal (MGO) and hydrogen peroxide to determine their effectiveness in inhibiting the growth of different species of bacteria (\textit{Bacillus subtilis}, \textit{S. aureus}, \textit{E. coli} and \textit{P. aeruginosa}). The author observed that the three manuka honey samples analyzed had the highest MGO contents, and were the most effective in inhibiting the growth of \textit{B. subtilis}, \textit{E. coli} and \textit{S. aureus}, with all the observed levels of growth inhibition being similar. Low honey concentrations (1–4\%) caused significant lag-phase extension and bacterial growth was completely inhibited once concentrations reached 8–16\%. Therefore the author demonstrated the potency of natural honey as an antimicrobial wound dressing, and that a range of effects arise from the variety of active compounds present, which not only allow active honey to have a broad spectrum of activity, apparently free of undesirable side effects, but also reduce the potential for resistant microbial populations to evolve.

Propolis

The research reported in reference95 indicates that propolis delays growth and progression of skin changes in the early stage of infection with Herpes simplex and does not cause cytotoxicity. It was reported that propolis extracts can be used locally in viral infections.31 The study in reference96 verified the synergism between ciprofloxacin and propolis in the treatment of experimental \textit{S. aureus} keratitis. It was also suggested that the simultaneous use of propolis and antibiotics may reduce the acquisition of resistance, and consequently remove the need for more powerful antibiotics.97 Propolis may also show synergistic effects with antimicrobial drugs, and its association with commercially disposable drugs is a field of interest in the development of new products by the pharmaceutical industry.98 It was reported that propolis diminished the resistance of the bacterial wall to antibiotics (amoxicillin, ampicillin and cefalexin)99 and acted synergistically with antibiotics acting on ribosomes (chloramphenicol, tetracycline and neomycin).100 Another study showed that propolis included in an ointment base influences the healing process and stimulates the proliferation of keratinocytes, in a way that depends on the wound healing stage.101 A study of propolis ointment demonstrated its superior wound healing effect in comparison with the classical treatment of silver sulfadiazine.102 The possibility of treating burn lesions with propolis was reported in clinical studies.103 In a previous study of the use of propolis to treat cutaneous erythema, it was found to induce severe collagenization, but the use of propolis in open wounds results in normal collagenization. This leads to the conclusion that propolis acts differently upon the collagenization process depending on the lesion type.104

OTHER APPLICATIONS OF HONEY AND PROPOLIS IN HUMAN HEALTH

Honey

Honey has been used as a traditional medicine for centuries, by different cultures and for the treatment of a range of disorders. Reference105 opines that honey with a high level
of antibacterial activity has the potential to reduce the risk of dental caries. In addition to the carioprotective effect of New Zealand manuka honey, Molan and co-workers have shown from his extensive work on the influence of honey on oral health that honey prevents dental plaque, gingivitis, and periodontics. Other workers in different laboratories have also shown that honey is non-cariogenic or less cariogenic than sucrose, which may be due to the protective role of its constituents, among which are inorganic ions and other colloidal components.

The case of a patient with persistent fistula, resistant to conventional therapy, that were completely healed after six months of treatment with honey has also been reported. Recent studies compared the clinical and mycological cure rates of a novel mixture consisting of honey and yogurt with local antifungal agents for treating patients with vulvo-vaginal candidiasis during pregnancy, and obtained very promising results.

Several authors have reported the antibacterial activity of honey against bacteria causing life-threatening infections in humans. The effectiveness of honey in killing Proteus spp, S. aureus, E. coli and P. aeruginosa bacterial strains involved in urinary tract infections, diarrhea, septicemia, diabetic foot ulcers, community acquired nosocomial infections and wound infections has been widely reported. Other studies also highlight the activities of honey in killing Mycobacterium tuberculosis. Another study tested a monofloral honey, and found that it successfully eradicated the bacterial flora in the conjunctival sac after seven days of continuous administration. The study involved patients in the perioperative period of cataract surgery or vitrectomy. The results obtained indicate that honeydew honey may act as a prophylactic agent of endophthalmitis. Another study tested the in vitro antiviral effect of manuka and clover honeys at concentrations ranging from 0–6% (w/v) against a clinical varicella zoster virus. Their results showed that both types of honey showed antiviral activity in vitro against this virus with an approximate EC50 = 4.5 % (w/v). Other studies reported the use of honey in treating diarrhea, and found that it may effect repair of the intestinal mucosa damaged by the infection, it was used to treat peptic ulcers and gastritis infected by Helicobacter pylori, to treat Fournier’s gangrene, and found to promote rapid healing, especially in first and second degree burns.

Propolis

The research carried out in reference indicated the effectiveness of a propolis extract in reducing the growth of bacteria that belong to the red complex (Fusobacterium nucleatum, Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Campylobacter rectus and Tannerella forsythia). The studies in references confirmed the antibacterial properties of propolis in relation to pathogens of periodontitis. According to some authors, the antibacterial effects are due to flavonoids, phenol acids, and their esters. The results in reference showed the clinical effectiveness of a toothpaste and gel containing a 3% ethanolic extract of propolis in a group of patients with a greater risk of gingivitis caused by dental plaque. As propolis rinses the mouth, and propolis-based toothpastes stop the growth of pathogens of gingivitis and periodontitis, these materials
seem to be promising not only as preventive but also as therapeutic agents. The results obtained by reference 126 showed, however, that propolis extracts in concentrations that effectively reduce pathogenic organisms for periodontal diseases are cytotoxic for the gingival fibroblasts.

The first report of the biological activity of Portuguese propolis demonstrated that propolis displays effective antiproliferative activity against human renal cancer cells. Furthermore, a comparison of the *in vitro* responses of normal and malignant cells to propolis extracts revealed that cancerous cells were more sensitive in terms of growth inhibition than normal cells. The study reported the main constituents of an aqueous extract of Brazilian green propolis from Southeast Brazil and the effects of the orally administered aqueous extract on distinct phases of wound healing (cellular recruitment and extracellular matrix deposition) in a murine sponge model. Their results showed a decrease in cellular recruitment after treatment with propolis. It has been reported that phenolic compounds exert a wide range of biological actions, such as antioxidant activity by scavenging free radicals. Propolis has been found to exert indirect cytotoxic effects on malignant cancer cell lines by activating macrophages. Its anti-inflammatory role and wound healing promoting properties have also been reported: studies have examined the *in vitro* effect of a Chilean propolis ethanolic extract on human spermatozoa treated with benzo[a]pyrene and exogenous reactive oxygen species. The work demonstrates that the natural drug under investigation is able to protect genomic DNA from damage induced by benzo[a]pyrene, hydrogen peroxide and hydrogen peroxide in combination with adenosine 5'-diphosphate (ADP) and ferrous sulfate (FeSO₄), producing a significant reduction in intracellular oxidants. A propolis extract was shown to possess the capacity to protect sperm membranes from oxidative attack, suggesting that it may have a role in protection against male infertility.

CONCLUSIONS AND FUTURE PROSPECTS

According to the literature referred to in this chapter, beehive products are useful, not only in the treatment of infected wounds, but also in other medical conditions. Even though some studies provide enough information and trials to hypothesize the introduction of beehive products on the clinical practice, it must be ensured that the quality parameters are met, for example, that they are free of microbiological contaminations and pesticides. Indeed, the general applicability of honey requires its safe preparation and is hampered by the insufficient knowledge of its composition and mechanisms of action, as well as lack of standardization. One possibility would be to apply the beehive products topically, initially as a complement to conventional therapy. In addition, the lack of reported resistance supports the use of honey and propolis as a new approach for treating multidrug resistant wounds.

Taking into account the current limitations, future studies must thoroughly characterize the biological activities of these products, by analyzing the underlying mechanisms of action and isolating the most beneficial compounds, mainly those related to preventing microorganisms developing drug resistance.

IV. SKIN AND SOFT TISSUE INFECTIONS
References

IV. SKIN AND SOFT TISSUE INFECTIONS
13. THE ROLE OF HONEY AND PROPOLIS IN THE TREATMENT OF INFECTED WOUNDS

REFERENCES

IV. SKIN AND SOFT TISSUE INFECTIONS
13. THE ROLE OF HONEY AND PROPOLIS IN THE TREATMENT OF INFECTED WOUNDS

80. Betts JA, Molan PC. A pilot trial of honey as a wound dressing has shown the importance of the way honey is applied to wounds. *11th conference of the european wound management association*. Dublin, Ireland; 2001.
REFERENCES

IV. SKIN AND SOFT TISSUE INFECTIONS

