A stretched simulated annealing algorithm for locating all global maximizers

Ana I.P.N. Pereira1, Edite M.G.P. Fernandes2*

1apereira@ipb.pt, Polytechnic Institute of Braganca, Braganca, Portugal
2emgpf@dps.uminho.pt, University of Minho, Braga, Portugal

Abstract

In this work we consider the problem of finding all the global maximizers of a given multimodal optimization problem. We propose a new algorithm that combines the simulated annealing (SA) method with a function stretching technique to generate a sequence of global maximization problems that are defined whenever a new maximizer is identified. Each global maximizer is located through a variant of the SA algorithm. Results of numerical experiments with a set of well-known test problems show that the proposed method is effective. We also compare the performance of our algorithm with other multi-global optimizers.

Keywords: Global optimization. Simulated annealing. Stretching technique. Multimodal optimization.

1 Introduction

The multi-global optimization problem consists of finding all the global solutions of the following maximization problem

\[
\max_{t \in T} g(t)
\]

where \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) is a given multimodal objective function and \(T \) is a compact set defined by

\[
T = \{ t \in \mathbb{R}^n : a_i \leq t_i \leq b_i, i = 1, ..., n \}.
\]

So, our purpose is to find all points \(t^* \in T \) such that

\[
\forall t \in T, \ g(t^*) \geq g(t).
\]

This type of problem appears in many practical situations, for example, in ride comfort optimization \cite{7} and in some areas of the chemical engineering (such as process synthesis, design and control) \cite{8}. Reduction methods for solving semi-infinite programming problems also require multi-global optimizers \cite{23, 29}.

The most used methods for solving a multimodal optimization problem rely on, for example, evolutionary algorithms (such as the genetic algorithm \cite{2} and the particle swarm optimization algorithm \cite{21}) and variants of the multi-start algorithm (clustering, domain elimination, zooming, repulsion) \cite{32}. Other contributions can be found in \cite{14, 26, 31}.

The simulated annealing (SA), proposed in 1983 by Kirkpatrick, Gelatt and Vecchi, and in 1985 by Cerny, appeared as a method to solve combinatorial optimization problems. Since then, the SA algorithm has been applied in many areas such as the graph partitioning, graph coloring, number partitioning, circuit design, composite structural design, data analysis, image reconstruction, neural networks, biology, geophysics and finance \cite{11, 13, 25}. Usually the SA method converges to just one global solution in each run.

Recently, a new technique based on function stretching has been used in a particle swarm optimization context \cite{21}, in order to avoid the premature convergence of the method to local (non-global) solutions.

In this paper, we propose to use the function stretching technique with a simulated annealing algorithm to be able to compute all the global solutions of problem (1). Each time a global maximizer is
detected by the SA algorithm, the objective function of the problem is locally transformed by a function stretching that eliminates the detected maximizer leaving the other maximizers unchanged. This process is repeated until no more global solution is encountered.

This paper is organized as follows. Section 2 describes the simulated annealing method. Section 3 contains the basic ideas behind the function stretching technique. Our proposed algorithm is presented in Section 4 and the numerical results and some conclusions are shown in Sections 5 and 6, respectively.

2 Simulated annealing method

The simulated annealing method is a well-known stochastic method for global optimization. It is also one of the most used algorithms in global optimization, mainly due to the fact that it does not require any derivative information and specific conditions on the objective function. Furthermore, the asymptotical convergence to a global solution is guaranteed.

The main phases of the SA method are the following: the generation of a new candidate point, the acceptance criterion, the reduction of the control parameters and the stopping criterion.

The generation of a new candidate point is crucial as it should provide a good exploration of the search region as well as a feasible point. A generating probability density function, \(f(t_k) \), is used to find a new point \(y \) based on the current approximation, \(t_k \). We refer to Bohachevsky et al. [1], Corana et al. [3], Szu and Hartley [28], Dekkers and Aarts [4], Romeijn and Smith [24], Ingber [11] and Tsallis and Stariolo [30] for details.

The acceptance criterion allows the SA algorithm to avoid getting stuck in local solutions when searching for a global one. For that matter, the process accepts points whenever an increase of the objective function is verified.

The acceptance criterion is described as

\[
t_{k+1} = \begin{cases}
 y & \text{if } \tau \leq A_{t_k y}(c_A^k) \\
 t_k & \text{otherwise}
\end{cases}
\]

where \(t_k \) is the current approximation to the global maximum, \(y \) is the new candidate point, \(\tau \) is a random number drawn from \(U(0, 1) \) and \(A_{t_k y}(c_A^k) \) is the acceptance function. This function represents the probability of accepting the point \(y \) when \(t_k \) is the current point, and it depends on a positive control parameter \(c_A^k \) and on the difference of the function values at the points \(y \) and \(t_k \).

The acceptance criterion based on the following acceptance function

\[
A_{t_k y}(c_A^k) = \min \left\{ 1, e^{-\frac{g(t_k) - g(y)}{c_A^k}} \right\}
\]

is known as Metropolis criterion. This criterion accepts all points where the objective function value increases, i.e., \(g(t_k) \leq g(y) \). However, if \(g(t_k) > g(y) \), the point \(y \) might be accepted with some probability. During the iterative process, the probability of descent movements decreases slowly to zero. Different acceptance criteria are proposed in Ingber [11] and Tsallis and Stariolo [30], for example.

The control parameter \(c_A^k \), also known as temperature or cooling schedule, must be updated in order to define a positive decreasing sequence, verifying

\[
\lim_{k \to \infty} c_A^k = 0.
\]

When \(c_A^k \) is high, the maximization process searches in the whole feasible region, looking up for promising regions to find the global maximum. As the algorithm develops, \(c_A^k \) is slowly reduced and the algorithm computes better precision approximations to the optimum. For a good performance of the algorithm, the initial control parameter must be sufficiently high (to search for promising regions) but not extremely high because the algorithm becomes too slow. To solve this dilemma, some authors suggested that a preliminary analysis of the objective function should be done in order to find an appropriate value. For more details see Dekkers and Aarts [4], Ingber [11] and Laarhoven and Aarts [15].
All stopping criteria for the SA are based on the idea that the algorithm should terminate when no further changes occur. The usual stopping criterion limits the number of function evaluations, or defines a lower limit for the value of the control parameter. See Corana et al. [3], Dekkers and Aarts [4] and Ingber [11] for different alternatives.

2.1 A variant of the ASA algorithm

Adaptive Simulated Annealing (ASA) proposed by Ingber, in 1996, is today the most used variant of the SA method and it is characterized by two functions: the generating probability density function, \(f_{G}(c_{G}) \), and the acceptance function, \(A_{V}(c_{A}) \). Both functions depend on the current approximation, on the new candidate point and on the control parameters, \(c_{G} \in \mathbb{R}^{n} \) and \(c_{A} \in \mathbb{R} \), respectively.

In the ASA algorithm, the new candidate point is determined as follows:

\[
y_{i} = t_{i}^{k} + \lambda_{i}(b_{i} - a_{i}) \quad \text{for } 1 \leq i \leq n
\]

where \(a_{i} \) and \(b_{i} \) are the lower and upper bounds for the \(t_{i} \) variable, respectively. The value \(\lambda_{i} \in (-1, 1) \) is given by

\[
\lambda_{i} = \text{sign} \left(u - \frac{1}{2} \right) \left(\left(1 + \frac{1}{c_{G}} \right)^{2u-1} - 1 \right) c_{G}^{k}
\]

where \(u \) is a uniformly distributed random variable in \((0,1)\) and \(\text{sign(.)} \) is the well-known three-valued sign function.

If \(y \) is not a feasible point, then one of the following three procedures: repetition, projection or reflection, should be applied. A brief description follows.

Procedure I: Repetition

This technique was proposed by Ingber in the context of the ASA algorithm [11]. In this case, the equations (3) and (4) are applied repeatedly until a feasible point is encountered.

Procedure II: Projection

The main idea of this procedure is to project the candidate point onto the feasible region using the following transformation

\[
y_{i} = \begin{cases}
 a_{i} & \text{if } a_{i} > y_{i} \\
 y_{i} & \text{if } a_{i} \leq y_{i} \leq b_{i} \\
 b_{i} & \text{if } b_{i} < y_{i}
\end{cases}
\quad \text{for } i = 1, \ldots, n.
\]

Procedure III: Reflection

This transformation was proposed by Romeijn et al. in the context of an SA algorithm for mixed-integer and continuous optimization. The main idea is to reflect the candidate point onto the feasible region

\[
y_{i} = \begin{cases}
 2a_{i} - y_{i} & \text{if } a_{i} > y_{i} \\
 y_{i} & \text{if } a_{i} \leq y_{i} \leq b_{i} \\
 2b_{i} - y_{i} & \text{if } b_{i} < y_{i}
\end{cases}
\quad \text{for } i = 1, \ldots, n.
\]

For more details see [25].

The control parameters \(c_{G}^{k} \), in the ASA algorithm, are updated according to

\[
\begin{align*}
 k_{G} &= k_{G} + 1 \\
 c_{G}^{k} &= c_{G}^{k} e^{-\kappa(k_{G}) \frac{1}{k}} \quad \text{for } 1 \leq i \leq n
\end{align*}
\]
where \(c_{gi}^0\) is the initial value of the control parameter \(c_{gi}\), and \(\kappa\) is defined by \(\kappa = -\ln(\epsilon)e^{-\frac{\ln(N_\epsilon)}{n}}\). The values for \(\epsilon\) and \(N_\epsilon\) are determined using

\[
\begin{cases}
 \frac{c_{ki}^0}{k^i} = c_{gi}^0, \\
 k^i = N_\epsilon,
\end{cases}
\]

being \(c_{gi}^0\) an estimate of the final value of the control parameter \(c_{gi}\), and \(k^i\) represents a threshold value for the maximum number of iterations. To see how the values of \(\epsilon\) and \(N_\epsilon\) influence the algorithm we refer to the work of Niu [18].

Similarly, when the new candidate point \(y\) is accepted, the control parameter \(c_A^k\) is updated by

\[
\begin{cases}
 k_A = k_A + 1 \\
 c_A^k = c_A^0 \exp(-\kappa k_A)\frac{1}{k_A}
\end{cases}
\]

for an initial value \(c_A^0\).

To speed up the search process, our variant of the ASA algorithm also considers the reannealing of the process. This means that the control parameters are redefined during the iterative process.

For example, at the end of every cycle of \(N_{A,\text{max}}\) accepted points or after \(N_{G,\text{max}}\) iterations, the quantities \(k_{Gi}\), reported in the updating scheme (5), are redefined according to

\[
k_{Gi} = \begin{cases}
 \left[\frac{-\frac{1}{\kappa} \ln(\rho_i)}{1}\right]^n & \text{if } \rho_i < 1 \\
 1 & \text{otherwise,}
\end{cases}
\]

where

\[
\rho_i = \frac{s_{max} c_{Gi}^k}{s_i c_{Gi}^0},
\]

for all \(i\), where \(s_{max} = \max\{s_i\}\) and \(s_i\) represents the absolute value of an approximation to the partial derivative with respect to the variable \(t_i\) at \(t^*\), the best approximation to the global maximizer found so far, and is given by

\[
s_i = \frac{|g(t^* + \delta t_i) - g^*|}{\delta},
\]

where \(g^*\) is the best approximation to the global maximum, \(\delta\) is a small real parameter and \(e_i \in \mathbb{R}^n\) is the \(i^{th}\) Euclidean vector.

Similarly, whenever \(N_{A,\text{max}}\) accepted points are reported or at every \(N_{G,\text{max}}\) iterations, the parameters \(c_A^0\) and \(k_A\) in the updating scheme (6), are redefined as follows:

\[
\bar{c}_A = \min \{c_A^0, \max \{|g^*(t)|, |g^*(t) - g^*|\} \}
\]

and

\[
k_A = \left[\frac{-\frac{1}{\kappa} \ln(\bar{c}_A)}{\bar{c}_A} c_A^0\right]^n
\]

where \(\bar{c}_A = \min \{c_A^0, \max \{|g^*(t) - g^*|, c_A^k\} \}\).

A description of our variant of the ASA algorithm follows.

We consider the following initial values. A randomly selected initial feasible approximation \(t^0\), fixed numbers of accepted points \(N_{A,\text{max}}\) and iterations \(N_{G,\text{max}}\) for reannealing, \(\kappa = -\ln(\epsilon)e^{-\frac{\ln(N_\epsilon)}{n}}\), \(k = k_A = k_G = 0\), \(c_{Gi}^0 = 1.0\), \(n_A = n_G = 0\), \(t^* = t^0\), \(g^* = g(t^*)\) and \(n_{fe} = 1\). The initial control parameter \(c_A^0\) is computed through a preliminary analysis of the objective function \(g\).

Variant of ASA Algorithm

while stopping criterion is not reached do

 generate a new candidate point \(y\) through equations (3) and (4)

 if \(y\) is not a feasible point then apply the repetition, projection or reflection procedure
end if

set \(k = k + 1 \) and \(n_G = n_G + 1 \)

calculate \(\bar{g} = g(y) \) and set \(n_{fe} = n_{fe} + 1 \)

if the acceptance criterion is satisfied (condition (2)) then

set \(n_A = n_A + 1 \)

set \(t^k = y \) and \(g^c = \bar{g} \)

if \(g^k > g^* \) then

if \((|g^k - g^*| < \varepsilon_{abs}) \) or \((\frac{|g^k - g^*|}{|g^*|} < \varepsilon_{rel}) \) then set \(n_{eq}^g = n_{eq}^g + 1 \)

else set \(n_{eq}^g = 0 \)

end if

set \(t^* = y \) and \(g^* = g^k \)

end if

else set \(t^k = t^{k-1} \) and \(g^k = g^{k-1} \)

end if

if \(n_A \geq N_{A\text{max}} \) or \(n_G \geq N_{G\text{max}} \) then

redefine \(k_{Gi}, c_0^A \) and \(k_A \), using equations (7), (8) and (9)

set \(n_A = 0 \) and \(n_G = 0 \)

end if

update the control parameters \(c^k_{Gi} \) and \(k_{Gi} \) with equations (5)

if \(y \) was accepted and \(n_G \neq 0 \) then update the control parameters \(c^k_A \) and \(k_A \) with equations (6)

end if

end while

end algorithm

The iterative process terminates if the found approximation to the global solution does not change for a fixed number of iterations, that is

\[n_{eq}^g \geq M_{g^*}^{\text{max}} \]

or a maximum number of function evaluations is reached, herein represented by

\[n_{fe} > M_{fe}^{\text{max}}, \]

where \(M_{fe}^{\text{max}} \) represents a threshold value. This last condition is motivated by the fact that the efficiency of ASA algorithm substantially depends on the problem dimension.

For details on the algorithm convergence analysis, see [11, 12].

3 Stretching technique

For multimodal functions, some global optimization algorithms converge prematurely to local solutions. This is the case with the simplest versions of the particle swarm optimization algorithm. To overcome this problem, Parsopoulos and Vrahatis [19] proposed a function stretching technique that provides a way to escape from local optima when the particle swarm optimization convergence stagnates, driving
the search to a global solution. This technique works in the following way. When a local maximizer \(\bar{t} \) is detected, a two-stage transformation of the original objective function is carried out as follows:

\[
\tilde{g}(t) = g(t) - \delta_1 \frac{1}{2} \| t - \bar{t} \| \left(\text{sign} \left(g(\bar{t}) - g(t) \right) + 1 \right),
\]

\[
\tilde{g}(t) = \bar{g}(t) - \delta_2 \text{sign} \left(g(\bar{t}) - g(t) \right) + 1 - \frac{1}{2} \tanh \left(\mu (g(t) - \bar{g}(t)) \right),
\]

where \(\delta_1, \delta_2 \) and \(\mu \) are positive constants.

At points \(t \) that verify \(g(t) < g(\bar{t}) \), the transformation defined in (10) reduces the original objective function values by \(\delta_1 \| t - \bar{t} \| \). The second transformation (11) emphasizes the decrease of the original objective function by making a substantial reduction on the objective function values.

For all points \(t \) such that \(g(t) \geq g(\bar{t}) \), the objective function values remain unchanged, so allowing the location of the global maximizer. When applying the global algorithm to the function \(\tilde{g} \), the method is capable of finding other local solutions, \(\tilde{t} \), that satisfy \(g(\tilde{t}) \geq g(\bar{t}) \). If another local (non-global) solution is found, the process is repeated until the global maximum is encountered.

Parsopoulos and Vrahatis also proposed in [21] a different version of the particle swarm optimization algorithm for locating multiple global solutions. Based on the function stretching technique (or a deflation technique), the algorithm isolates sequentially points that have objective function values larger than a threshold value, and performs a local search (with a small swarm) in order to converge to a global solution, while the big swarm continues searching the rest of the region for other global solutions.

4 Stretched simulated annealing algorithm

The Stretched Simulated Annealing (SSA) algorithm herein proposed is capable of locating all global solutions of problem (1) combining our variant of the ASA algorithm, described in Section 2, with local applications of the function stretching technique. In our case, this technique is applied not to avoid local solutions but to find all global maxima, since ASA algorithm convergence to a global solution is guaranteed with probability one. Assume now that the following assumption is verified.

Assumption 1: All global solutions of problem (1) are isolated points.

Considering the Assumption 1, and since the feasible region is a compact set, then we can guarantee that the problem (1) has a finite number of local solutions.

At each iteration \(k \), the SSA algorithm solves, using the ASA algorithm, the following global optimization problem:

\[
\max_{t \in T} \Phi_k(t) \equiv \begin{cases}
 g(t) & \text{if } k = 1 \\
 w(t) & \text{if } k > 1,
\end{cases}
\]

where the function \(w(t) \) is defined as

\[
w(t) = \begin{cases}
 \tilde{g}(t) & \text{if } t \in V_\varepsilon(\bar{t}_i) \\
 g(t) & \text{otherwise},
\end{cases}
\]

and \(\bar{t}_i \) \((i = 1, 2, ..., \bar{m})\) denotes a previously found global maximizer. \(V_\varepsilon(\bar{t}_i) \) represents a neighborhood of \(\bar{t}_i \), with ray \(\varepsilon \), \(\bar{m} \) is the number of previously found global solutions of (1) and \(\tilde{g} \) is the function defined in (11).

The SSA algorithm resorts in a sequence of global optimization problems whose objective functions are the original \(g \), in the first iteration, and the transformed \(w \) in the subsequent iterations. As the function stretching technique is only applied in a neighborhood of an already detected global maximizer, the ASA global algorithm is able to identify the other global maximizers that were not yet found.

To illustrate this idea, we consider the test function (herein named Parsopoulos) reported in [20],

\[
\text{CS}(t) = - \left(\cos^2(t_1) + \sin^2(t_2) \right)
\]
with feasible region $[-5, 5]^2$. In this hypercube, the function CS has 12 global maximizers. The plot of CS(t) is given in the left figure of Figure 1.

Figure 1: Original function CS and stretched CS

Applying the function stretching in a neighborhood of one global maximizer, for example $t^\ast = (\frac{\pi}{2}, 0)^T$, we obtain the "stretched function CS" that can be seen on the right of Figure 1. Figure 2 illustrates with more detail the application of function stretching, in the neighborhood of the optimum. The plot on the left shows the function \bar{g} (obtained after the first transformation) and the one on the right represents the function \tilde{g} (after the second transformation).

Figure 2: Stretched function CS: first and second transformations

As we can see, when the function stretching is applied in a neighborhood of a global maximizer, this maximum disappears and the other global solutions are left unchanged (see Figure 1). Thus, our SSA algorithm is able to detect all global solutions of problem (1).

This iterative process terminates if no new global maximizer is detected, in a fixed number of successive iterations, $N_{g,\text{max}}$, or a maximum number of function evaluations, $N_{fe,\text{max}} = nN_{f,\text{max}}$ is reached, for a threshold $N_{f,\text{max}}$.

5 Numerical results

The proposed algorithm was implemented on a Pentium II Celeron 466 Mhz with 64Mb of RAM, in the C programming language and connected with AMPL [9] to provide the coded problems. AMPL is a mathematical programming language that allows the codification of optimization problems in a powerful and easy to learn language. AMPL also provides an interface that can be used to communicate with a solver.

For the stopping criterion of the ASA algorithm we chose the following parameters: $M_{g,\text{max}} = 5$, $M_{f,\text{max}} = 10000$, $\epsilon = 10^{-5}$, $N_e = 10^2$, $N_{A,\text{max}} = 20$, $N_{G,\text{max}} = 1000$, $e_{g,\text{rel}} = 10^{-8}$ and $e_{g,\text{rel}} = 10^{-6}$. The constants in equations (10) and (11) were set to $\delta_1 = 100$, $\delta_2 = 1$ and $\mu = 10^{-3}$. Finally, in the SSA algorithm we considered the following parameters: $N_{g,\text{max}} = 3$, $N_{f,\text{max}} = 50000$ and $\epsilon = 0.25$. To obtain the initial control parameter c_0^A, a preliminary analysis for each test function was carried out with a sample of $10n$ feasible points [4].
Each problem was run 10 times with randomly selected initial approximations.

5.1 Numerical experiences with SSA algorithm

First we compare the performance of the SSA algorithm when equipped with the three procedures: repetition, projection and reflection. For that, we use a set of 21 benchmark functions that have more than one global solution (see the Appendix for more details). The numerical results are presented in the Tables 1, 2 and 3. These tables report averaged numbers of: percentage of frequency of occurrence (Freq. Occur.), number of ASA calls (N_{ASA}), number of function evaluations (N_{FE}), CPU time (in seconds) and best function value (g^*_m). The last column reports the best function value obtained in all 10 runs (g^*). The percentage of frequency of occurrence is the ratio between the number of detected global maximizers and the number of known maximizers. Thus, 100% means that all known global maximizers were detected in all 10 runs.

Table 1: Numerical results of SSA algorithm equipped with the repetition procedure.

<table>
<thead>
<tr>
<th>Name</th>
<th>Freq. Occur.</th>
<th>N_{ASA}</th>
<th>N_{FE}</th>
<th>CPU</th>
<th>g^*_m</th>
<th>g^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS_1</td>
<td>100</td>
<td>6</td>
<td>7302</td>
<td>0.039</td>
<td>3.55211e−11</td>
<td>2.11205e−20</td>
</tr>
<tr>
<td>CS_2</td>
<td>99</td>
<td>12</td>
<td>28573</td>
<td>0.247</td>
<td>9.36766e−11</td>
<td>3.89995e−13</td>
</tr>
<tr>
<td>g_1</td>
<td>100</td>
<td>6</td>
<td>12696</td>
<td>0.078</td>
<td>−1.0e+02</td>
<td>−1.0e+02</td>
</tr>
<tr>
<td>HC</td>
<td>100</td>
<td>5</td>
<td>19017</td>
<td>0.116</td>
<td>−1.03163e+00</td>
<td>−1.03163e+00</td>
</tr>
<tr>
<td>HM_1</td>
<td>100</td>
<td>5</td>
<td>8823</td>
<td>0.036</td>
<td>3.10239e−08</td>
<td>1.95652e−15</td>
</tr>
<tr>
<td>HM_2</td>
<td>100</td>
<td>5</td>
<td>10426</td>
<td>0.042</td>
<td>−4.81447e+00</td>
<td>−4.81447e+00</td>
</tr>
<tr>
<td>HM_3</td>
<td>85</td>
<td>5</td>
<td>27448</td>
<td>0.128</td>
<td>7.88236e−09</td>
<td>2.98634e−12</td>
</tr>
<tr>
<td>HP</td>
<td>100</td>
<td>5</td>
<td>24636</td>
<td>0.195</td>
<td>4.79688e−08</td>
<td>4.65555e−08</td>
</tr>
<tr>
<td>HS_1</td>
<td>84</td>
<td>14</td>
<td>16811</td>
<td>0.205</td>
<td>−1.76542e+02</td>
<td>−1.76542e+02</td>
</tr>
<tr>
<td>PS</td>
<td>98</td>
<td>15</td>
<td>29716</td>
<td>0.297</td>
<td>3.05417e−011</td>
<td>3.16409e−12</td>
</tr>
<tr>
<td>RC</td>
<td>90</td>
<td>6</td>
<td>27693</td>
<td>0.175</td>
<td>3.97887e−01</td>
<td>3.97887e−01</td>
</tr>
<tr>
<td>SHC</td>
<td>97</td>
<td>31</td>
<td>36311</td>
<td>0.616</td>
<td>−1.86731e+02</td>
<td>−1.86731e+02</td>
</tr>
<tr>
<td>SHS</td>
<td>91</td>
<td>13</td>
<td>13470</td>
<td>0.164</td>
<td>−2.40625e+01</td>
<td>−2.40625e+01</td>
</tr>
<tr>
<td>SR_1</td>
<td>100</td>
<td>5</td>
<td>13630</td>
<td>0.088</td>
<td>4.73862e−10</td>
<td>4.11784e−12</td>
</tr>
<tr>
<td>ST_1</td>
<td>100</td>
<td>5</td>
<td>14932</td>
<td>0.086</td>
<td>−4.07462e−01</td>
<td>−4.07462e−01</td>
</tr>
<tr>
<td>ST_2</td>
<td>100</td>
<td>5</td>
<td>27470</td>
<td>0.152</td>
<td>−1.80587e+01</td>
<td>−1.80587e+01</td>
</tr>
<tr>
<td>ST_3</td>
<td>100</td>
<td>5</td>
<td>18374</td>
<td>0.108</td>
<td>−2.27766e+02</td>
<td>−2.27766e+02</td>
</tr>
<tr>
<td>ST_4</td>
<td>100</td>
<td>5</td>
<td>28201</td>
<td>0.155</td>
<td>−2.42941e+03</td>
<td>−2.42941e+03</td>
</tr>
<tr>
<td>ST_5</td>
<td>100</td>
<td>9</td>
<td>25304</td>
<td>0.156</td>
<td>−2.47765e+04</td>
<td>−2.47765e+04</td>
</tr>
<tr>
<td>ST_6</td>
<td>100</td>
<td>9</td>
<td>30016</td>
<td>0.184</td>
<td>−2.49293e+05</td>
<td>−2.49293e+05</td>
</tr>
<tr>
<td>ZL_2</td>
<td>100</td>
<td>6</td>
<td>10645</td>
<td>0.066</td>
<td>−1.20312e+01</td>
<td>−1.20312e+01</td>
</tr>
</tbody>
</table>
We found that all variants of the SSA algorithm were able to identify the global solutions of the tested problems in less than one second of CPU time.
In one dimensional problems, all variants of the SSA algorithm find all global solutions requiring a small number of function evaluations. The three variants find good precision approximations to the global solutions, with absolute errors (difference between the average best function value and the best function value obtained in all runs) smaller than 10^{-7}. For the other tested problems we obtain absolute errors smaller than 10^{-6} or relative errors smaller than 10^{-6}.

The three variants of the SSA algorithm have a similar behavior. Table 4 reports the cumulative results of each variant for the 21 tested problems. The column Freq. Occur. displays the mean values of the previous tables.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Freq. Occur.</th>
<th>N_{ASA}</th>
<th>N_{FE}</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA with repetition</td>
<td>97.33%</td>
<td>177</td>
<td>431494</td>
<td>3.333</td>
</tr>
<tr>
<td>SSA with projection</td>
<td>96.95%</td>
<td>170</td>
<td>450478</td>
<td>3.414</td>
</tr>
<tr>
<td>SSA with reflection</td>
<td>97.76%</td>
<td>177</td>
<td>426924</td>
<td>3.251</td>
</tr>
</tbody>
</table>

It seems that the SSA algorithm equipped with the reflection procedure need less number of function evaluations, CPU time and has a higher mean frequency of occurrence considering that the number of ASA calls is the same as in the repetition procedure.

In some well-known multimodal problems, the existence of many local maximizers makes it quite difficult for most global algorithms to determine the global solution. The algorithms usually stop prematurely in a local solution. We decided to analyze the behavior of our SSA algorithm with the reflection procedure in this class of problems. Therefore, Table 5 reports on the obtained numerical results with problems that have only one global but many local solutions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Freq. Occur.</th>
<th>N_{ASA}</th>
<th>N_{FE}</th>
<th>CPU</th>
<th>g_m^*</th>
<th>g^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_2</td>
<td>100</td>
<td>4</td>
<td>18769</td>
<td>0.105</td>
<td>7.65309e−08</td>
<td>1.01274e−09</td>
</tr>
<tr>
<td>AC_{10}</td>
<td>100</td>
<td>4</td>
<td>400000</td>
<td>10</td>
<td>5.79117e−03</td>
<td>2.92029e−03</td>
</tr>
<tr>
<td>BH</td>
<td>100</td>
<td>7</td>
<td>44294</td>
<td>0.233</td>
<td>1.22976e−08</td>
<td>2.16794e−10</td>
</tr>
<tr>
<td>DK_1</td>
<td>100</td>
<td>4</td>
<td>17686</td>
<td>0.173</td>
<td>2.99828e−08</td>
<td>5.46132e−10</td>
</tr>
<tr>
<td>DK_2</td>
<td>100</td>
<td>4</td>
<td>47033</td>
<td>0.442</td>
<td>2.24175e−08</td>
<td>1.29772e−10</td>
</tr>
<tr>
<td>ES</td>
<td>100</td>
<td>4</td>
<td>7664</td>
<td>0.047</td>
<td>−9.99982e−01</td>
<td>−1.0e+00</td>
</tr>
<tr>
<td>GR_2</td>
<td>100</td>
<td>14</td>
<td>50260</td>
<td>0.4</td>
<td>6.15069e−09</td>
<td>3.71967e−11</td>
</tr>
<tr>
<td>GR_6</td>
<td>100</td>
<td>9</td>
<td>300000</td>
<td>31.3</td>
<td>3.45093e−03</td>
<td>1.76476e−09</td>
</tr>
<tr>
<td>HS_2</td>
<td>100</td>
<td>4</td>
<td>6301</td>
<td>0.058</td>
<td>−1.76138e+02</td>
<td>−1.76138e+02</td>
</tr>
<tr>
<td>L_8</td>
<td>100</td>
<td>4</td>
<td>13478</td>
<td>0.103</td>
<td>3.12838e−08</td>
<td>5.87716e−10</td>
</tr>
<tr>
<td>RS_2</td>
<td>100</td>
<td>4</td>
<td>22213</td>
<td>0.098</td>
<td>1.56997e−08</td>
<td>8.00071e−12</td>
</tr>
<tr>
<td>RS_5</td>
<td>100</td>
<td>4</td>
<td>70294</td>
<td>0.545</td>
<td>3.45929e−08</td>
<td>1.21951e−09</td>
</tr>
<tr>
<td>RS_{10}</td>
<td>100</td>
<td>4</td>
<td>400000</td>
<td>13</td>
<td>1.78926e−04</td>
<td>8.617038e−05</td>
</tr>
<tr>
<td>$S_{4,10}$</td>
<td>100</td>
<td>4</td>
<td>17162</td>
<td>0.181</td>
<td>−8.56369e+01</td>
<td>−1.05364e+01</td>
</tr>
<tr>
<td>SC_2</td>
<td>100</td>
<td>4</td>
<td>8960</td>
<td>0.045</td>
<td>−8.37966e+02</td>
<td>−8.37966e+02</td>
</tr>
<tr>
<td>SC_5</td>
<td>100</td>
<td>4</td>
<td>21964</td>
<td>0.195</td>
<td>−2.09491e+03</td>
<td>−2.09491e+03</td>
</tr>
<tr>
<td>SC_{10}</td>
<td>100</td>
<td>7</td>
<td>470822</td>
<td>41.1</td>
<td>−4.18982e+03</td>
<td>−4.18983e+03</td>
</tr>
<tr>
<td>SN</td>
<td>100</td>
<td>38</td>
<td>82875</td>
<td>5.54</td>
<td>9.0e−01</td>
<td>9.0e−01</td>
</tr>
<tr>
<td>TS_1</td>
<td>100</td>
<td>4</td>
<td>8167</td>
<td>0.041</td>
<td>−2.0e+00</td>
<td>−2.0e+00</td>
</tr>
<tr>
<td>ZL_1</td>
<td>100</td>
<td>4</td>
<td>6063</td>
<td>0.025</td>
<td>−1.12230e+00</td>
<td>−1.12500e+00</td>
</tr>
</tbody>
</table>

With the problems BH, SN, GR_2 and GR_6, the SSA algorithm was also able to detect some local solutions. In particular, with the function SN the iterative process finds 28 local solutions. This happens because the function has a large number of local maxima whose values are quite similar to the value of the global maximum.
For the high dimensional problems \(AC_{10}, RS_{10}, SC_{10} \), the SSA algorithm identifies the region where the global maximum is located, but with a lower accuracy.

The function stretching efficiency is more evident in the problems \(GR_2, GR_6 \) and \(SN \). We run separately the ASA algorithm and obtained percentages of frequency of occurrence of 20%, 30% and 30%, respectively. When we use the SSA algorithm these percentages climb to 100% (see Table 5).

5.2 Comparison with other solvers

It does not seem an easy task to compare the performance of our algorithm with other multi-global solvers as some authors failed to report on important data, namely the number of function evaluations required to reach the solutions with a certain accuracy. For example, for the problem \(PS \) that was also solved by a version of PSO algorithm in [20], the authors claim to find all global solutions after 12 cycles of the method with accuracy \(10^{-5} \), probably in a single run. No other information is reported concerning this problem. In all 10 runs, our SSA algorithm found all solutions with accuracy \(10^{-10} \) requiring on average 15 ASA calls and 29910 function evaluations.

Meng et al. [17] proposed the adaptive swarm algorithm for multi-global optimization problems and presented numerical results for the three problems: \(CS_1, CS_2 \) and \(HS_1 \). Table 6 contains a brief comparison. For the test function \(HS_1 \), Meng et al. consider the feasible region \([-5, 5]^2\) and only indicate that the four global solutions were obtained after 17127 function evaluations. The SSA algorithm required 13002 function evaluations and 0.13 seconds of CPU time to reach the same solutions. For these cases, our SSA framework seems to perform favorably against the adaptive swarm algorithm.

Table 6: A comparison of results with those obtained by Meng et al.

<table>
<thead>
<tr>
<th></th>
<th>Adaptive swarm algorithm</th>
<th>Stretched simulated annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq. occur.</td>
<td>Best solution</td>
</tr>
<tr>
<td>(CS_1)</td>
<td>93%</td>
<td>(6.34 \times 10^{-7})</td>
</tr>
<tr>
<td>(CS_2)</td>
<td>78%</td>
<td>(5.12 \times 10^{-5})</td>
</tr>
</tbody>
</table>

Kiseleva and Stepanchuk [14] proposed a global solver based on a method of optimal set partitioning to find all solutions of the problem (1). Some of their numerical results are presented in Table 7. The Kiseleva and Stepanchuk algorithm did not find the global solutions of problem \(ZL_2 \). The SSA algorithm found all global solutions within a few number of iterations and a reduced CPU time. Considering these problems, our algorithm outperforms the one presented in [14].

Table 7: A comparison of results with those obtained by Kiseleva and Stepanchuk.

<table>
<thead>
<tr>
<th></th>
<th>Optimal set partitioning algorithm</th>
<th>Stretched simulated annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N_{global})</td>
<td>(N_{local})</td>
</tr>
<tr>
<td>(HM_1)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(HM_2)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(ZL_1)</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>(ZL_2)</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>(HM_3)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(SR_1)</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Salhi and Queen [26] proposed an hybrid algorithm that finds all local solutions of the problem (1). This algorithm needs in general few function evaluations to identify the first global maximum and it seems quite efficient in finding all solutions, except in problem \(SHC \) where a 51% of frequency of occurrence is reported, after 829 function evaluations, to identify just one global solution. Our algorithm requires more function evaluations but it was able to detect almost all global maxima in all simulation runs.
6 Conclusions

In this work, we propose a new stochastic algorithm for locating all global solutions of multimodal optimization problems through the use of local applications of the function stretching technique and a variant of the adaptive simulated annealing method. Our computational experiments show that the SSA algorithm is capable of detecting with high rates of success all the global optima within an acceptable number of function evaluations. The numerical results also indicate that the SSA algorithm is a useful tool for detecting a global optimum when the problem has a large number of local solutions.

In our view, we may adapt the SSA algorithm to find all the global solutions as well as some local (non-global) ones, probably the "best", in the sense that these local solutions have function values that satisfy

$$|g(t^*) - g(t_i^*)| < \eta$$

where t^* represents the global maximizer and t_i^* are the desired non-global maximizers, for a fixed positive η. This issue is now under investigation.

References

Appendix

Table 8 shows the main characteristics of the multimodal test problems, namely the name of the problem, the reference from where we took the problem (Ref.), the number of variables \(n\), the feasible region, the number of known global maximizers \(N_{global}\), the number of known local (non-global) maximizers \(N_{local}\) and the known global maximum value.

<table>
<thead>
<tr>
<th>Name</th>
<th>Ref.</th>
<th>(n)</th>
<th>Feasible region</th>
<th>(N_{global})</th>
<th>(N_{local})</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackley, (AC_n)</td>
<td>[22, 33]</td>
<td>(n)</td>
<td>([-32, 32]^n)</td>
<td>1</td>
<td>About 300</td>
<td>0</td>
</tr>
<tr>
<td>Bohachevsky, (BH)</td>
<td>[2, 10]</td>
<td>2</td>
<td>([-100, 100]^2)</td>
<td>1</td>
<td>More than 10</td>
<td>0</td>
</tr>
<tr>
<td>Branin, (RC)</td>
<td>[2, 4, 6, 10]</td>
<td>2</td>
<td>([-5, 10] \times [0, 15])</td>
<td>3</td>
<td>0</td>
<td>3.97887e−01</td>
</tr>
<tr>
<td>Cos, (CS_1)</td>
<td>[17]</td>
<td>1</td>
<td>([0, 10])</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cos, (CS_2)</td>
<td>[17]</td>
<td>2</td>
<td>([0, 10]^2)</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dekkers, (DK_1)</td>
<td>[4, 33]</td>
<td>3</td>
<td>([-10, 10]^3)</td>
<td>1</td>
<td>About 5(^3)</td>
<td>0</td>
</tr>
<tr>
<td>Dekkers, (DK_2)</td>
<td>[4, 33]</td>
<td>5</td>
<td>([-5, 5]^5)</td>
<td>1</td>
<td>About 15(^5)</td>
<td>0</td>
</tr>
<tr>
<td>Easom, (ES)</td>
<td>[2, 10, 22]</td>
<td>2</td>
<td>([-10, 10]^2)</td>
<td>1</td>
<td>More than 10</td>
<td>−1.0e+00</td>
</tr>
<tr>
<td>Griewank, (GR_n)</td>
<td>[10, 16, 22]</td>
<td>(n)</td>
<td>([-10, 10]^n)</td>
<td>1</td>
<td>More than 10</td>
<td>0</td>
</tr>
<tr>
<td>(^\dagger)g_1\</td>
<td>proposed</td>
<td>2</td>
<td>([-10, 10]^2)</td>
<td>2</td>
<td>0</td>
<td>−1.0e+02</td>
</tr>
<tr>
<td>Hansen (N^1, HS_1)</td>
<td>[16, 31]</td>
<td>2</td>
<td>([-10, 10]^2)</td>
<td>9</td>
<td>About 760</td>
<td>−1.75642e+02</td>
</tr>
<tr>
<td>Hansen (N^2, HS_2)</td>
<td>[20]</td>
<td>2</td>
<td>([-10, 10]^2)</td>
<td>1</td>
<td>About 760</td>
<td>−1.76138e+02</td>
</tr>
<tr>
<td>Himmelblau, (HM_1)</td>
<td>[14]</td>
<td>1</td>
<td>([-2, 2])</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Himmelblau, (HM_2)</td>
<td>[14]</td>
<td>1</td>
<td>([-7.85, 7.85])</td>
<td>2</td>
<td>1</td>
<td>−4.81447e+00</td>
</tr>
<tr>
<td>Himmelblau, (HM_3)</td>
<td>[14]</td>
<td>2</td>
<td>([-2, 4]^2)</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hump, (HP)</td>
<td>[10]</td>
<td>2</td>
<td>([-5, 5]^2)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Levy (N^8, L_8)</td>
<td>[20]</td>
<td>3</td>
<td>([-10, 10]^3)</td>
<td>1</td>
<td>About 125</td>
<td>0</td>
</tr>
<tr>
<td>Parsopoulos, (PS)</td>
<td>[20]</td>
<td>2</td>
<td>([-5, 5]^2)</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rastrigin, (RS_n)</td>
<td>[5, 22]</td>
<td>(n)</td>
<td>([-5.12, 5.12]^n)</td>
<td>1</td>
<td>About 120</td>
<td>0</td>
</tr>
<tr>
<td>Schwefel, (SC_n)</td>
<td>[22]</td>
<td>(n)</td>
<td>([-500, 500]^n)</td>
<td>1</td>
<td>About 50</td>
<td>(-n \times 4.18983e+02)</td>
</tr>
<tr>
<td>Six Hump Camel, (HC)</td>
<td>[16, 22, 31]</td>
<td>2</td>
<td>([-5, 5]^2)</td>
<td>2</td>
<td>4</td>
<td>−1.03163e+00</td>
</tr>
<tr>
<td>Shekel, (S_{4,10})</td>
<td>[2, 6, 10, 26]</td>
<td>4</td>
<td>([0, 10]^4)</td>
<td>1</td>
<td>9</td>
<td>−1.05364e+01</td>
</tr>
<tr>
<td>Shubert, (SHC)</td>
<td>[2, 10, 26]</td>
<td>2</td>
<td>([-10, 10]^2)</td>
<td>18</td>
<td>About 760</td>
<td>−1.86731e+02</td>
</tr>
<tr>
<td>Shubert, (SHS)</td>
<td>[16, 31]</td>
<td>2</td>
<td>([-10, 10]^2)</td>
<td>9</td>
<td>About 390</td>
<td>−2.40025e+01</td>
</tr>
<tr>
<td>Storn, (ST_1)</td>
<td>[27]</td>
<td>2</td>
<td>([-2, 2]^2)</td>
<td>2</td>
<td>1</td>
<td>−4.07462e−01</td>
</tr>
<tr>
<td>Storn, (ST_2)</td>
<td>[27]</td>
<td>2</td>
<td>([-4, 4]^2)</td>
<td>2</td>
<td>1</td>
<td>−1.80587e+01</td>
</tr>
<tr>
<td>Storn, (ST_3)</td>
<td>[27]</td>
<td>2</td>
<td>([-8, 8]^2)</td>
<td>2</td>
<td>1</td>
<td>−2.27766e+02</td>
</tr>
<tr>
<td>Storn, (ST_4)</td>
<td>[27]</td>
<td>2</td>
<td>([-14, 14]^2)</td>
<td>2</td>
<td>1</td>
<td>−2.42941e+03</td>
</tr>
<tr>
<td>Storn, (ST_5)</td>
<td>[27]</td>
<td>2</td>
<td>([-16, 16]^2)</td>
<td>2</td>
<td>1</td>
<td>−2.47765e+04</td>
</tr>
<tr>
<td>Storn, (ST_6)</td>
<td>[27]</td>
<td>2</td>
<td>([-28, 28]^2)</td>
<td>2</td>
<td>1</td>
<td>−2.49293e+05</td>
</tr>
<tr>
<td>Suharev, (SR_1)</td>
<td>[14]</td>
<td>2</td>
<td>([-3, 1] \times [-2, 2])</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tsooulos, (TS_1)</td>
<td>[31]</td>
<td>2</td>
<td>([-1, 1]^2)</td>
<td>1</td>
<td>About 40</td>
<td>−2.0e+00</td>
</tr>
<tr>
<td>Zilinskas, (ZL_1)</td>
<td>[14]</td>
<td>1</td>
<td>([-2, 2])</td>
<td>1</td>
<td>About 16</td>
<td>−1.125e+00</td>
</tr>
<tr>
<td>Zilinskas, (ZL_2)</td>
<td>[14]</td>
<td>1</td>
<td>([-10, 10])</td>
<td>3</td>
<td>About 17</td>
<td>−1.20312e+01</td>
</tr>
</tbody>
</table>

\(^\dagger\)g_1(t) = −t^2_1 + 2t^2_2 − 0.3 \cos (3\pi t_1) − 0.4 \cos (4\pi t_2) + 0.7